Skip to main content
Log in

Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The F-box protein Grr1p is involved in cell cycle regulation, glucose repression and transcriptional induction of the amino acid permease (AAP) gene AGP1. We investigated the role of Grr1p in amino acid-mediated induction of AAP genes by performing batch cultivations with a wild-type strain and a grr1Δ strain and adding citrulline in the exponential phase. Whole-genome transcription analyses were performed on samples from each cultivation, both immediately before and 30 min after citrulline addition. Transcriptional induction of the AAP genes AGP1, BAP2, BAP3, DIP5, GNP1 and TAT1 is fully dependent on Grr1p. Comparison of the grr1Δ strain with the reference strain in the absence of citrulline revealed that GRR1 disruption leads to increased transcription of numerous genes. These encode enzymes in the tricarboxylic acid cycle, the pentose-phosphate pathway and both glucose and starch metabolism. Promoter analysis showed that many of the genes with increased transcription display Mig1p- and/or Msn2p/Msn4p-binding sites. Increased expression of glucose-repressed genes in the grr1Δ strain may be explained by the reduced expression of the hexose transporter genes HXT1, HXT2, HXT3 and HXT4 and a subsequent lowering of the glucose uptake; and the effect of GRR1 deletion on general carbon metabolism may therefore be indirect. Finally, none of the genes known to be primarily involved in cell cycle regulation displayed different expression levels in the grr1Δ cells as compared with the reference strain, suggesting that the role of Grr1p in cell cycle regulation does not include any transcriptional component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andréasson C, Ljungdahl PO (2002) Receptor-mediated endoproteolytic activation of two transcription factors in yeast. Genes Dev 16:3158–3172

    PubMed  Google Scholar 

  • Barnes D, Lai W, Breslav M, Naider F, Becker JM (1998) PTR3, a novel gene mediating amino acid-inducible regulation of peptide transport in Saccharomyces cerevisiae. Mol Microbiol 29:297–310

    CAS  PubMed  Google Scholar 

  • Barral Y, Jentsch S, Mann C (1995) G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev 9:399–409

    CAS  PubMed  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    Article  CAS  PubMed  Google Scholar 

  • Bernard F, Andre B (2001) Ubiquitin and the SCF(Grr1) ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. FEBS Lett 496:81–85

    CAS  PubMed  Google Scholar 

  • Boer M de, Bebelman JP, Goncalves PM, Maat J, Van Heerikhuizen H, Planta RJ (1998) Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae. Mol Microbiol 30:603–613

    Google Scholar 

  • Boer M, Nielsen PS, Bebelman JP, Heerikhuizen H, Andersen HA, Planta RJ (2000) Stp1p, Stp2p and Abf1p are involved in regulation of expression of the amino acid transporter gene BAP3 of Saccharomyces cerevisiae. Nucleic Acids Res 28:974–981

    PubMed  Google Scholar 

  • Bro C, Regenberg B, Lagniel G, Labarre J, Montero-Lomeli M, Nielsen J (2003) Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells. J Biol Chem 278:32141–32149

    CAS  PubMed  Google Scholar 

  • Buziol S, Becker J, Baumeister A, Jung S, Mauch K, Reuss M, Boles E (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2:283–291

    CAS  PubMed  Google Scholar 

  • Clarke DJ (2002) Proteolysis and the cell cycle. Cell Cycle 1:233–234

    CAS  PubMed  Google Scholar 

  • Daran-Lapujade P, Daran JM, Kotter P, Petit T, Piper MD, Pronk JT (2003) Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res 4:259–269

    CAS  PubMed  Google Scholar 

  • Didion T, Grauslund M, Kielland-Brandt MC, Andersen HA (1996) Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae. J Bacteriol 178:2025–2029

    CAS  PubMed  Google Scholar 

  • Didion T, Regenberg B, Jørgensen MU, Kielland-Brandt MC, Andersen HA (1998) The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol 27:643–650

    CAS  PubMed  Google Scholar 

  • Eckert-Boulet N, Nielsen PS, Friis C, Moreira dos Santos M, Nielsen J, Kielland-Brandt MC, Regenberg B (2004) Transcriptional profiling of extracellular amino acid sensing in Saccharomyces cerevisiae and the role of Stp1p and Stp2p. Yeast 21:635–648

    CAS  PubMed  Google Scholar 

  • Flick JS, Johnston M (1991) GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol Cell Biol 11:5101–5112

    CAS  PubMed  Google Scholar 

  • Flick KM, Spielewoy N, Kalashnikova TI, Guaderrama M, Zhu Q, Chang HC, Wittenberg C (2003) Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell 14:3230–3241

    CAS  PubMed  Google Scholar 

  • Forsberg H, Ljungdahl PO (2001a) Genetic and biochemical analysis of the yeast plasma membrane Ssy1p- Ptr3p-Ssy5p sensor of extracellular amino acids. Mol Cell Biol 21:814–826

    CAS  PubMed  Google Scholar 

  • Forsberg H, Ljungdahl PO (2001b) Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr Genet 40:91–109

    CAS  PubMed  Google Scholar 

  • Gamo FJ, Lafuente MJ, Gancedo C (1994) The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae. J Bacteriol 176:7423–7429

    CAS  PubMed  Google Scholar 

  • Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schuller C (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597

    CAS  PubMed  Google Scholar 

  • Görner W, Durchschlag E, Wolf J, Brown EL, Ammerer G, Ruis H, Schuller C (2002) Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J 21:135–144

    Article  CAS  PubMed  Google Scholar 

  • Grauslund M, Didion T, Kielland-Brandt MC, Andersen HA (1995) BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae. Biochim Biophys Acta 1269:275–280

    CAS  PubMed  Google Scholar 

  • Grenson M, Hou C, Crabeel M (1970) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol 103:770–777

    CAS  PubMed  Google Scholar 

  • Helden J van (2003) Regulatory sequence analysis tools. Nucleic Acids Res 31:3593–3596

    PubMed  Google Scholar 

  • Horak J (1997) Yeast nutrient transporters. Biochim Biophys Acta 1331:41–79

    PubMed  Google Scholar 

  • Hsiung YG, Chang HC, Pellequer JL, La Valle R, Lanker S, Wittenberg C (2001) F-box protein Grr1 interacts with phosphorylated targets via the cationic surface of its leucine-rich repeat. Mol Cell Biol 21:2506–2520

    CAS  PubMed  Google Scholar 

  • Hubbard EJ, Jiang R, Carlson M (1994) Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae. Mol Cell Biol 14:1972–1978

    CAS  PubMed  Google Scholar 

  • Iraqui I, Vissers S, Bernard F, De Craene JO, Boles E, Urrestarazu A, Andre B (1999) Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad- specificity amino acid permease. Mol Cell Biol 19:989–1001

    CAS  PubMed  Google Scholar 

  • Jørgensen MU, Gjermansen C, Andersen HA, Kielland-Brandt MC (1997) STP1, a gene involved in pre-tRNA processing in yeast, is important for amino-acid uptake and transcription of the permease gene BAP2. Curr Genet 31:241–247

    PubMed  Google Scholar 

  • Jørgensen MU, Bruun MB, Didion T, Kielland-Brandt MC (1998) Mutations in five loci affecting GAP1-independent uptake of neutral amino acids in yeast. Yeast 14:103–114

    PubMed  Google Scholar 

  • Kishi T, Yamao F (1998) An essential function of Grr1 for the degradation of Cln2 is to act as a binding core that links Cln2 to Skp1. J Cell Sci 111:3655–3661

    CAS  PubMed  Google Scholar 

  • Klasson H, Fink GR, Ljungdahl PO (1999) Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol 19:5405–5416

    CAS  PubMed  Google Scholar 

  • Liang H, Gaber RF (1996) A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Mol Biol Cell 7:1953–1966

    CAS  PubMed  Google Scholar 

  • Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003

    Google Scholar 

  • Mosley AL, Lakshmanan J, Aryal BK, Özcan S (2003) Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator. J Biol Chem 278:10322–10327

    CAS  PubMed  Google Scholar 

  • Nielsen PS, Hazel B van den, Didion T, Boer M de, Jørgensen M, Planta RJ, Kielland-Brandt MC, Andersen HA (2001). Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2. Mol Gen Genet 264:613–622

    CAS  PubMed  Google Scholar 

  • Özcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572

    PubMed  Google Scholar 

  • Özcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    PubMed  Google Scholar 

  • Özcan S, Freidel K, Leuker A, Ciriacy M (1993) Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae. J Bacteriol 175:5520–5528

    PubMed  Google Scholar 

  • Özcan S, Schulte F, Freidel K, Weber A, Ciriacy M (1994) Glucose uptake and metabolism in grr1/cat80 mutants of Saccharomyces cerevisiae. Eur J Biochem 224:605–611

    PubMed  Google Scholar 

  • Özcan S, Dover J, Rosenwald AG, Wolfl S, Johnston M (1996a) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 93:12428–12432

    PubMed  Google Scholar 

  • Özcan S, Leong T, Johnston M (1996b) Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 16:6419–6426

    PubMed  Google Scholar 

  • Özcan S, Dover J, Johnston M (1998) Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17:2566–2573

    PubMed  Google Scholar 

  • Regenberg B, Hansen J (2000) GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae. Yeast 16:1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333

    CAS  PubMed  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317

    Article  PubMed  Google Scholar 

  • Ruis H, Schuller C (1995) Stress signaling in yeast. Bioessays 17:959–965

    CAS  PubMed  Google Scholar 

  • Schmidt A, Hall MN, Koller A (1994) Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol Cell Biol 14:6597–6606

    CAS  PubMed  Google Scholar 

  • Schmidt MC, McCartney RR, Zhang X, Tillman TS, Solimeo H, Wolfl S, Almonte C, Watkins SC (1999) Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19:4561–4571

    CAS  PubMed  Google Scholar 

  • Schreve JL, Sin JK, Garrett JM (1998) The Saccharomyces cerevisiae YCC5 (YCL025c) gene encodes an amino acid permease, Agp1, which transports asparagine and glutamine. J Bacteriol 180:2556–2559

    CAS  PubMed  Google Scholar 

  • Schulte F, Wieczorke R, Hollenberg CP, Boles E (2000) The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast. J Bacteriol 182:540–542

    CAS  PubMed  Google Scholar 

  • Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219

    CAS  PubMed  Google Scholar 

  • Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ, Harper JW (1999) Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284:662–665

    Google Scholar 

  • Smith A, Ward MP, Garrett S (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 17:3556–3564

    Article  CAS  PubMed  Google Scholar 

  • Stanbrough M, Magasanik B (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae. J Bacteriol 177:94–102

    CAS  PubMed  Google Scholar 

  • Thevelein JM, Winde JH de (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    CAS  PubMed  Google Scholar 

  • Thevelein JM, Cauwenberg L, Colombo S, Winde JH de, Donation M, Dumortier F, Kraakman L, Lemaire K, Ma P, Nauwelaers D, Rolland F, Teunissen A, Van Dijck P, Versele M, Wera S, Winderickx J (2000) Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol 26:819–825

    CAS  PubMed  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, Djiken JP van (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    CAS  PubMed  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Boas SG, Nielsen J, Olsson L (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:436–442

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Garrett J, Schreve J, Michaeli T (1996) GNP1, the high-affinity glutamine permease of S. cerevisiae. Curr Genet 30:107–114

    Google Scholar 

Download references

Acknowledgements

We would like to thank P. Kötter for providing the grr1Δ strain, Steen Lund Westergaard for discussing his results of a whole-genome transcription analysis on a grr1Δ mutant and Morten Kielland-Brandt for useful discussion of the results and feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Nielsen.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert-Boulet, N., Regenberg, B. & Nielsen, J. Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae. Curr Genet 47, 139–149 (2005). https://doi.org/10.1007/s00294-004-0553-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0553-1

Keywords

Navigation