Skip to main content
Log in

Characterization of pco-1, a newly identified gene which regulates purine catabolism in Neurospora

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A new gene of Neurospora crassa, designated pco-1, was characterized and shown to regulate the expression of several genes which encode enzymes required for the catabolism of purines. Unlike the wild type, a pco-1 mutant created by repeat-induced point mutation cannot utilize purines as a nitrogen source. The PCO1 protein contains a Zn(II)2Cys6 binuclear cluster motif near its N-terminus, followed by a putative coiled-coil motif. A chemical crosslinking experiment demonstrated that PCO1 forms homodimers. PCO1 binds to CGG-N6-CCG elements located in the upstream promoter region of four genes encoding purine catabolic enzymes. Northern blot analysis demonstrated that a functional PCO1 protein is required for induction of xdh, which encodes xanthine dehydrogenase. Moreover, PCO1 was required for induction of three different purine catabolic enzymes. Two glutamine-rich domains occur in the C-terminal region of PCO1 and at least one of the glutamine-rich regions is required for PCO1 function, suggesting that they might play a role in transcriptional activation. The PCO1 protein does not interact with the global-acting NIT2 protein or the negative-acting NMR protein that functions in nitrogen catabolite repression. Induction of the xdh gene and synthesis of xanthine dehydrogenase is completely dependent upon PCO1, but does not require the global-acting NIT2 protein, suggesting that it is controlled by a novel regulatory mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akiyama M, Nakashima H (1996) Molecular cloning of the acr-2 gene which controls acriflavine sensitivity in Neurospora crassa. Biochim Biophys Acta 1307:187–192

    Article  CAS  PubMed  Google Scholar 

  • Anderson SF, Steber CM, Esposito RE, Coleman JE (1995) UME6, a negative regulator of meiosis in Saccharomyces cerevisiae, contains a C-terminal Zn2Cys6 binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner. Protein Sci 4:1832–1843

    CAS  PubMed  Google Scholar 

  • Arst HNJ, Cove DJ (1973) Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet 126:111–141

    CAS  PubMed  Google Scholar 

  • Bailey LA, Ebbole DJ (1998) The fluffy gene of Neurospora crassa encodes a Gal4p-like C6 zinc cluster protein required for conidial development. Genetics 148:1813–1820

    CAS  PubMed  Google Scholar 

  • Baum JA, Geever R, Giles NH (1987) Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain. Mol Cell Biol 7:1256–1266

    CAS  PubMed  Google Scholar 

  • Bibbens M, Crepin VF, Cummings NJ, Mizote T, Baker K, Mellits KH, Connerton IF (2002) A regulator gene for acetate utilization from Neurospora crassa. Mol Genet Genomics 267:498–505

    Article  PubMed  Google Scholar 

  • Borkovich KA et al (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    Article  CAS  PubMed  Google Scholar 

  • Centis S, Dumas B, Fournier J, Marolda M, Esquerre-Tugaye MT (1996) Isolation and sequence analysis of Clpg1, a gene coding for an endopolygalacturonase of the phytopathogenic fungus Colletotrichum lindemuthianum. Gene 170:125–129

    Article  CAS  PubMed  Google Scholar 

  • Cohen C, Parry DA (1990) Alpha-helical coiled coils and bundles: how to design an alpha-helical protein. Proteins 7:1–15

    CAS  PubMed  Google Scholar 

  • Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25:147–150

    Article  CAS  PubMed  Google Scholar 

  • Courey AJ, Tjian R (1988) Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55:887–898

    Article  CAS  PubMed  Google Scholar 

  • Davis R, deSerras F (1970) Genetic and microbial research techniques for Neurospora crassa. Methods Enzymol 17A:79–143

    Google Scholar 

  • Dingwall C, Laskey RA (1991) Nuclear targeting sequences—a consensus? Trends Biochem Sci 16:478–481

    Article  CAS  PubMed  Google Scholar 

  • Endo H, Kajiwara S, Tsunoka O, Shishido K (1994) A novel cDNA, priBc, encoding a protein with a Zn(II)2Cys6 zinc cluster DNA-binding motif, derived from the basidiomycete Lentinus edodes. Gene 139:117–121

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Marzluf GA (1996) The regulatory protein NIT4 that mediates nitrate induction in Neurospora crassa contains a complex tripartite activation domain with a novel leucine-rich, acidic motif. Curr Genet 29:537–548

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Marzluf GA (1998) Interaction between major nitrogen regulatory protein NIT2 and pathway-specific regulatory factor NIT4 is required for their synergistic activation of gene expression in Neurospora crassa. Mol Cell Biol 18:3983–3990

    CAS  PubMed  Google Scholar 

  • Freiman RN, Tjian R (2002) Neurodegeneration: a glutamine-rich trail leads to transcription factors. Science 296:2149–2150

    Article  PubMed  Google Scholar 

  • Fu YH, Feng B, Evans S, Marzluf GA (1995) Sequence-specific DNA binding by NIT4, the pathway-specific regulatory protein that mediates nitrate induction in Neurospora. Mol Microbiol 15:935–942

    CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma L-J, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  CAS  PubMed  Google Scholar 

  • Gao-Rubinelli F, Marzluf GA (2004) Identification and characterization of a nitrate transporter gene in Neurospora crassa. Biochem Genet 42:21–34

    Article  CAS  PubMed  Google Scholar 

  • Geever RF, Huiet L, Baum JA, Tyler BM, Patel VB, Rutledge BJ, Case ME, Giles NH (1989) DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. J Mol Biol 207:15–34

    CAS  PubMed  Google Scholar 

  • Glassman E, Mitchell H (1958) Mutants of Drosophila melanogaster deficient in xanthine dehydrogenase. Genetics 44:153–162

    Google Scholar 

  • Glatigny A, Scazzocchio C (1995) Cloning and molecular characterization of hxA, the gene coding for the xanthine dehydrogenase (purine hydroxylase I) of Aspergillus nidulans. J Biol Chem 270:3534–3550

    Article  CAS  PubMed  Google Scholar 

  • Greene RC, Mitchell HK (1957) Uricase in Neurospora crassa. Arch Biochem 70:603–613

    CAS  PubMed  Google Scholar 

  • Griffith AB, Garrett RH (1988) Xanthine dehydrogenase expression in Neurospora crassa does not require a functional nit-2 regulatory gene. Biochem Genet 26:37–52

    CAS  PubMed  Google Scholar 

  • Hope IA, Struhl K (1987) GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J 6:2781–2784

    CAS  PubMed  Google Scholar 

  • Huang X, Miller W (1991) A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12:337–357

    Google Scholar 

  • Kaneko S, Miyazaki Y, Yasuda T, Shishido K (1998) Cloning, sequence analysis and expression of the basidiomycete Lentinus edodes gene uck1, encoding UMP-CMP kinase, the homologue of Saccharomyces cerevisae URA6 gene. Gene 211:259–266

    Article  CAS  PubMed  Google Scholar 

  • Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW, Arst HNJ (1990) The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9:1355–1364

    CAS  PubMed  Google Scholar 

  • Leach J, Finkelstein D, Rambosek J (1986) Rapid miniprep of DNA from filamentous fungi. Neurospora Newsl 33:32–33

    Google Scholar 

  • Lupas A (1996) Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382

    Article  CAS  PubMed  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    CAS  PubMed  Google Scholar 

  • Lyon ES, Garrett RH (1978) Regulation, purification, and properties of xanthine dehydrogenase in Neurospora crassa. J Biol Chem 253:2604–2614

    CAS  PubMed  Google Scholar 

  • Marmorstein R, Harrison SC (1994) Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Gen Dev 8:2504–2512

    CAS  Google Scholar 

  • Marmorstein R, Carey M, Ptashne M, Harrison SC (1992) DNA recognition by GAL4: structure of a protein–DNA complex. Nature 356:498–414

    Article  Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32

    CAS  PubMed  Google Scholar 

  • Marzluf GA (2001) Metabolic regulation in fungi. In: Khachatourians G, Arora D (eds) Applied mycology and biotechnology. Academic, New York, pp 55–72

  • Masloff S, Jacobsen S, Poggeler S, Kuck U (2002) Functional analysis of the C6 zinc finger gene pro1 involved in fungal sexual development. Fungal Genet Biol 36:107–116

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Feng B, Marzluf GA (1997) Two distinct protein-protein interactions between the NIT2 and NMR regulatory proteins are required to establish nitrogen metabolite repression in Neurospora crassa. Mol Microbiol 26:721–729

    Article  CAS  PubMed  Google Scholar 

  • Parsons LM, Davis MA, Hynes MJ (1992) Identification of functional regions of the positively acting regulatory gene from Aspergillus nidulans. Mol Microbiol 6:2999–3007

    CAS  PubMed  Google Scholar 

  • Qui HF, Dubois E, Messenguy F (1991) Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways. Mol Cell Biol 11:2169–2179

    CAS  PubMed  Google Scholar 

  • Reinert WR, Marzluf GA (1975a) Genetic and metabolic control of the purine catabolic enzymes of Neurospora crassa. Mol Gen Genet 139:39–55

    CAS  PubMed  Google Scholar 

  • Reinert WR, Marzluf GA (1975b) Regulation of the purine catabolic enzymes in Neurospora crassa. Arch Biochem Biophys 166:565–574

    CAS  PubMed  Google Scholar 

  • Saluja D, Vassallo MF, Tanese N (1998) Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators. Mol Cell Biol 18:5734–5743

    CAS  PubMed  Google Scholar 

  • Scazzocchio C, Holl FB, Foguelman AI (1973) The genetic control of molybdoflavoproteins in Aspergillus nidulans. Allopurinol-resistant mutants constitutive for xanthine-dehydrogenase. Eur J Biochem 36:428–445

    CAS  PubMed  Google Scholar 

  • Singer M, Kuzminova E, Tharp A, Margolin B, Selker E (1995) Different frequencies of RIP among early versus late ascospores of Neurospora crassa. Fungal Genet Newsl 42:74–75

    Google Scholar 

  • Suarez T, Oestreicher N, Kelly J, Ong G, Sankarsingh T, Scazzocchio C (1991) The uaY positive control gene of Aspergillus nidulans: fine structure, isolation of constitutive mutants and reversion patterns. Mol Gen Genet 230:359–368

    CAS  PubMed  Google Scholar 

  • Suarez T, Queiroz MV de, Oestreicher N, Scazzocchio C (1995) The sequence and binding specificity of UaY, the specific regulator of the purine utilization pathway in Aspergillus nidulans, suggest an evolutionary relationship with the PPR1 protein of Saccharomyces cerevisiae. EMBO J 14:1453–1467

    CAS  PubMed  Google Scholar 

  • Sze JY, Remboutsika E, Kohlhaw GB (1993) Transcriptional regulator Leu3 of Saccharomyces cerevisiae: separation of activator and repressor functions. Mol Cell Biol 13:5702–5709

    CAS  PubMed  Google Scholar 

  • Tao Y, Marzluf GA (1999) The NIT2 nitrogen regulatory protein of Neurospora: expression and stability of nit-2 mRNA and protein. Curr Genet 36:153–158

    Article  CAS  PubMed  Google Scholar 

  • Todd RB, Andrianopoulos A (1997) Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 21:388–405

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849

    Article  CAS  PubMed  Google Scholar 

  • Vollmer S, Yanofsky C (1986) Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci USA 83:4869–4873

    CAS  Google Scholar 

  • Xiao H, Jeang KT (1998) Glutamine-rich domains activate transcription in yeast Saccharomyces cerevisiae. J Biol Chem 273:22873–22876

    Article  CAS  PubMed  Google Scholar 

  • Yuan GF, Fu YH, Marzluf GA (1991) nit-4, A pathway-specific regulatory gene of Neurospora crassa, encodes a protein with a putative binuclear zinc DNA-binding domain. Mol Cell Biol 11:5735–5745

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T.D., Marzluf, G.A. Characterization of pco-1, a newly identified gene which regulates purine catabolism in Neurospora. Curr Genet 46, 213–227 (2004). https://doi.org/10.1007/s00294-004-0530-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0530-8

Keywords

Navigation