Skip to main content
Log in

Sarkome: Gensignaturen

Sarcoma gene signatures

  • Schwerpunkt
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Besprochen wird die für Diagnose, Prognose und Prädiktion des Therapieansprechens von Sarkomen wichtigste Gensignatur. Fast die Hälfte aller Sarkome weist eine einfache, spezifische Genläsion auf: rekurrente Translokationen (10–15% der Sarkome), spezifische aktivierende (GIST) bzw. inaktivierende (Rhabdoidtumoren) Mutationen, MDM2-Amplifikation in hoch- und entdifferenzierten Liposarkomen sowie in Intimasarkomen. Vor kurzem wurde eine Genexpressionssignatur veröffentlicht, die sich für die Prädiktion einer Metastasierung deutlich besser eignet als die histologische Graduierung. Sie besteht aus 67 Genen, die alle zu an der chromosomalen Integrität beteiligten Pfaden gehören, was für die besondere Rolle dieser Mechanismen bei der Entstehung von Metastasen spricht. Andererseits gibt es, mit Ausnahme von GIST mit KIT- and PDGFRA-Mutationen, bisher noch keine validierte prädiktive Gensignatur.

Abstract

This review reports the main gene signature specific for the diagnosis, prognosis or prediction of drug response in sarcomas. Almost half of sarcomas show a simple genetic lesion which is specific for the diagnosis: recurrent translocations in 10 to 15% of sarcomas, specific activating and inactivating mutations in GIST and rhabdoid tumor respectively, and MDM2 amplification in well-differentiated and dedifferentiated liposarcomas as well as in intimal sarcoma. A recent study reported a gene expression signature which is much better than histological grading for predicting metastasis outcome. This signature is composed of 67 genes all belonging to pathways involved in chromosome integrity suggesting an important role of these mechanisms in the development of metastases. On the other hand, and except for GIST with KIT and PDGFRA mutations, there is no validated predictive gene signature so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Agaram NP, Besmer P, Wong GC et al (2007) Pathologic and molecular heterogeneity in imatinib-stable or imatinib-responsive gastrointestinal stromal tumors. Clin Cancer Res 13:170–181

    Article  CAS  PubMed  Google Scholar 

  2. Antonescu CR (2006) The role of genetic testing in soft tissue sarcoma. Histopathology 48:13–21

    Article  CAS  PubMed  Google Scholar 

  3. Astolfi A, Nannini M, Pantaleo MA et al (2010) A molecular portrait of gastrointestinal stromal tumors: an integrative analysis of gene expression profiling and high-resolution genomic copy number. Lab Invest 90:1285–94

    Article  CAS  PubMed  Google Scholar 

  4. Aurias A, Rimbaut C, Buffe D et al (1983) Translocation of chromosome 22 in Ewing’s sarcoma. C R Seances Acad Sci III 296:1105–1107

    CAS  PubMed  Google Scholar 

  5. Baird K, Davis S, Antonescu CR et al (2005) Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65:9226–9235

    Article  CAS  PubMed  Google Scholar 

  6. Beck AH, Lee CH, Witten DM et al (2010) Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling. Oncogene 29:845–854

    Article  CAS  PubMed  Google Scholar 

  7. Carneiro A, Francis P, Bendahl PO et al (2009) Indistinguishable genomic profiles and shared prognostic markers in undifferentiated pleomorphic sarcoma and leiomyosarcoma: different sides of a single coin? Lab Invest 89:668–675

    Article  CAS  PubMed  Google Scholar 

  8. Chibon F, Lagarde P, Salas S et al (2010) Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med 16:781–787

    Article  CAS  PubMed  Google Scholar 

  9. Cleton-Jansen AM, Anninga JK, Briaire-de BI et al (2009) Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways. Br J Cancer 101:1909–1918

    Article  PubMed  Google Scholar 

  10. Coindre JM, Pedeutour F, Aurias A (2010) Well-differentiated and dedifferentiated liposarcomas. Virchows Arch 456:167–179

    Article  CAS  PubMed  Google Scholar 

  11. Davicioni E, Finckenstein FG, Shahbazian V et al (2006) Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66:6936–6946

    Article  CAS  PubMed  Google Scholar 

  12. Bruijn DR de, Nap JP, Kessel AG van (2007) The (epi)genetics of human synovial sarcoma. Genes Chromosomes Cancer 46:107–117

    Article  PubMed  Google Scholar 

  13. Delattre O, Zucman J, Plougastel B et al (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359:162–165

    Article  CAS  PubMed  Google Scholar 

  14. Detwiller KY, Fernando NT, Segal NH et al (2005) Analysis of hypoxia-related gene expression in sarcomas and effect of hypoxia on RNA interference of vascular endothelial cell growth factor A. Cancer Res 65:5881–5889

    Article  CAS  PubMed  Google Scholar 

  15. Fletcher CDM, Unni KK, Mertens F (2002) Tumours of soft tissue and bone. Pathology and genetics. World Health Organization. IARC, Lyon

  16. Francis P, Namlos HM, Muller C et al (2007) Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 8:73

    Article  PubMed  Google Scholar 

  17. Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349

    Article  CAS  PubMed  Google Scholar 

  18. Henderson SR, Guiliano D, Presneau N et al (2005) A molecular map of mesenchymal tumors. Genome Biol 6:R76

    Article  PubMed  Google Scholar 

  19. Hernando E, Charytonowicz E, Dudas ME et al (2007) The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med 13:748–753

    Article  CAS  PubMed  Google Scholar 

  20. Ito T, Ouchida M, Morimoto Y et al (2005) Significant growth suppression of synovial sarcomas by the histone deacetylase inhibitor FK228 in vitro and in vivo. Cancer Lett 224:311–319

    Article  CAS  PubMed  Google Scholar 

  21. Lee CH, Espinosa I, Vrijaldenhoven S et al (2008) Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin Cancer Res 14:1423–1430

    Article  CAS  PubMed  Google Scholar 

  22. Lee YF, John M, Edwards S et al (2003) Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling. Br J Cancer 88:510–515

    Article  CAS  PubMed  Google Scholar 

  23. Lee YF, John M, Falconer A et al (2004) A gene expression signature associated with metastatic outcome in human leiomyosarcomas. Cancer Res 64:7201–7204

    Article  CAS  PubMed  Google Scholar 

  24. Liegl-Atzwanger B, Fletcher JA, Fletcher CD (2010) Gastrointestinal stromal tumors. Virchows Arch 456:111–127

    Article  PubMed  Google Scholar 

  25. Linn SC, West RB, Pollack JR et al (2003) Gene expression patterns and gene copy number changes in dermatofibrosarcoma protuberans. Am J Pathol 163:2383–2395

    Article  CAS  PubMed  Google Scholar 

  26. Miller SJ, Jessen WJ, Mehta T et al (2009) Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Mol Med 1:236–248

    Article  CAS  PubMed  Google Scholar 

  27. Morgan T, Atkins GJ, Trivett MK et al (2005) Molecular profiling of giant cell tumor of bone and the osteoclastic localization of ligand for receptor activator of nuclear factor kappaB. Am J Pathol 167:117–128

    Article  CAS  PubMed  Google Scholar 

  28. Nagayama S, Katagiri T, Tsunoda T et al (2002) Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. Cancer Res 62:5859–5866

    CAS  PubMed  Google Scholar 

  29. Nakayama R, Nemoto T, Takahashi H et al (2007) Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma. Mod Pathol 20:749–759

    Article  CAS  PubMed  Google Scholar 

  30. Neale G, Su X, Morton CL et al (2008) Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res 14:4572–4583

    Article  CAS  PubMed  Google Scholar 

  31. Nielsen TO, West RB, Linn SC et al (2002) Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 359:1301–1307

    Article  CAS  PubMed  Google Scholar 

  32. Nielsen TO, West RB (2010) Translating gene expression into clinical care: sarcomas as a paradigm. J Clin Oncol 28:1796–1805

    Article  CAS  PubMed  Google Scholar 

  33. Ordonez JL, Osuna D, Garcia-Dominguez DJ et al (2010) The clinical relevance of molecular genetics in soft tissue sarcomas. Adv Anat Pathol 17:162–181

    Article  PubMed  Google Scholar 

  34. Paoloni M, Davis S, Lana S et al (2009) Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genomics 10:625

    Article  PubMed  Google Scholar 

  35. Scotlandi K, Remondini D, Castellani G et al (2009) Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. J Clin Oncol 27:2209–2216

    Article  CAS  PubMed  Google Scholar 

  36. Segal NH, Pavlidis P, Antonescu CR et al (2003) Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol 163:691–700

    Article  CAS  PubMed  Google Scholar 

  37. Segal NH, Pavlidis P, Noble WS et al (2003) Classification of clear-cell sarcoma as a subtype of melanoma by genomic profiling. J Clin Oncol 21:1775–1781

    Article  CAS  PubMed  Google Scholar 

  38. Singer S, Socci ND, Ambrosini G et al (2007) Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67:6626–6636

    Article  CAS  PubMed  Google Scholar 

  39. Skubitz KM, Pambuccian S, Manivel JC, Skubitz AP (2008) Identification of heterogeneity among soft tissue sarcomas by gene expression profiles from different tumors. J Transl Med 6:23

    Article  PubMed  Google Scholar 

  40. Sonnemann J, Dreyer L, Hartwig M et al (2007) Histone deacetylase inhibitors induce cell death and enhance the apoptosis-inducing activity of TRAIL in Ewing’s sarcoma cells. J Cancer Res Clin Oncol 133:847–858

    Article  CAS  PubMed  Google Scholar 

  41. Subramanian S, Thayanithy V, West RB et al (2010) Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours. J Pathol 220:58–70

    Article  CAS  PubMed  Google Scholar 

  42. Tanas MR, Goldblum JR (2009) Fluorescence in situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol 16:383–391

    Article  CAS  PubMed  Google Scholar 

  43. Trojani M, Contesso G, Coindre JM et al (1984) Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int J Cancer 33:37–42

    Article  CAS  PubMed  Google Scholar 

  44. Versteege I, Sevenet N, Lange J et al (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206

    Article  CAS  PubMed  Google Scholar 

  45. Verweij J, Casali PG, Zalcberg J et al (2004) Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364:1127–1134

    Article  CAS  PubMed  Google Scholar 

  46. Wan X, Helman LJ (2007) The biology behind mTOR inhibition in sarcoma. Oncologist 12:1007–1018

    Article  PubMed  Google Scholar 

  47. Whiteford CC, Bilke S, Greer BT et al (2007) Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res 67:32–40

    Article  CAS  PubMed  Google Scholar 

  48. Williamson D, Missiaglia E, de RA et al (2010) Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol 28:2151–2158

    Article  PubMed  Google Scholar 

  49. Wurl P, Kappler M, Meye A et al (2002) Co-expression of survivin and TERT and risk of tumour-related death in patients with soft-tissue sarcoma. Lancet 359:943–945

    Article  CAS  PubMed  Google Scholar 

  50. Yamaguchi U, Nakayama R, Honda K et al (2008) Distinct gene expression-defined classes of gastrointestinal stromal tumor. J Clin Oncol 26:4100–4108

    Article  CAS  PubMed  Google Scholar 

  51. Zhang H, Erickson-Johnson M, Wang X et al (2010) Molecular testing for lipomatous tumors: critical analysis and test recommendations based on the analysis of 405 extremity-based tumors. Am J Surg Pathol 34:1304–1311

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chibon, F., Coindre, JM. Sarkome: Gensignaturen. Pathologe 32, 32–39 (2011). https://doi.org/10.1007/s00292-010-1393-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-010-1393-z

Schlüsselwörter

Keywords

Navigation