Skip to main content
Log in

Truck synchronization at single door cross-docking terminals

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

We address the problem of synchronizing the loading and discharging operations of trucks at a particular cross-docking center, with one door at both the inbound and outbound sides, aiming at minimizing the makespan of the whole process. We propose a mixed integer linear model and a Lagrangian decomposition scheme. We derive conditions for optimally solving both the Lagrangian relaxation and the dual problems. Based on the theoretical results, we propose a Lagrangian heuristic for computing many feasible solutions and gathering the best one among them. An extensive computational experience validates our Lagrangian heuristic, also in comparison with a state-of-the-art benchmark solver and a heuristic algorithm from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alpan G, Larbi R, Penz B (2011) A bounded dynamic programming approach to schedule operations in a cross docking platform. Comput Ind Eng 60(3):385–396 (Recent Developments in the Analysis of Manufacturing and Support Systems)

    Article  Google Scholar 

  • Arabani AB, Ghomi SF, Zandieh M (2011a) Meta-heuristics implementation for scheduling of trucks in a cross-docking system with temporary storage. Expert Syst Appl 38(3):1964–1979

    Article  Google Scholar 

  • Arabani AB, Zandieh M, Ghomi SF (2011b) Multi-objective genetic-based algorithms for a cross-docking scheduling problem. Appl Soft Comput 11(8):4954–4970

    Article  Google Scholar 

  • Astorino A, Gaudioso M, Miglionico G (2018) Lagrangian relaxation for the directional sensor coverage problem with continuous orientation. Omega 75:1339–1351

    Article  Google Scholar 

  • Boloori Arabani A, Zandieh M, Fatemi Ghomi SMT (2012) A cross-docking scheduling problem with sub-population multi-objective algorithms. Int J Adv Manuf Technol 58(5–8):741–761

    Article  Google Scholar 

  • Boloori Arabani A, Fatemi Ghomi SMT, Zandieh M (2010) A multi-criteria cross-docking scheduling with just-in-time approach. Int J Adv Manuf Technol 49(5–8):741–756

    Article  Google Scholar 

  • Boysen N, Briskorn D, Tschöke M (2013) Truck scheduling in cross-docking terminals with fixed outbound departures. OR Spectr 35(2):479–504

    Article  Google Scholar 

  • Boysen N, Fliedner M (2010) Cross dock scheduling: classification, literature review and research agenda. Omega 38(6):413–422

    Article  Google Scholar 

  • Boysen N, Fliedner M, Scholl A (2010) Scheduling inbound and outbound trucks at cross docking terminals. OR Spectr 32(1):135–161

    Article  Google Scholar 

  • Buijs P, Vis IF, Carlo HJ (2014) Synchronization in cross-docking networks: a research classification and framework. Eur J Oper Res 239(3):593–608

    Article  Google Scholar 

  • Carrabs F, Cerulli R, Gaudioso M, Gentili M (2013) Lower and upper bounds for the spanning tree with minimum branch vertices. Comput Optim Appl 56(2):405–438

    Article  Google Scholar 

  • Chen F, Lee CY (2009) Minimizing the makespan in a two-machine cross-docking flow shop problem. Eur J Oper Res 193(1):59–72

    Article  Google Scholar 

  • Fisher ML (1981) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 27(1):1–18

    Article  Google Scholar 

  • Gaudioso M, Giallombardo G, Miglionico G (2009) On solving the Lagrangian dual of integer programs via an incremental approach. Comput Optim Appl 44(1):117–138

    Article  Google Scholar 

  • Geoffrion AM (1974) Lagrangian relaxation for integer programming. Math Progr Study 2:82–114

    Article  Google Scholar 

  • Gupta JND, Stafford EF (2006) Flowshop scheduling research after five decades. Eur J Oper Res 169:699–711

    Article  Google Scholar 

  • Held M, Wolfe P, Crowder HD (1974) Validation of subgradient optimization. Math Progr 6:22–88

    Article  Google Scholar 

  • Johnson SM (1981) Optimal two and three-stages production schedules with setup times included. Naval Res Logist Quart 1:61–68

    Article  Google Scholar 

  • Pinedo ML (2008) Scheduling: theory, algorithms, and systems, 3rd edn. Springer, Berlin

    Google Scholar 

  • Van Belle J, Valckenaers P, Cattrysse D (2012) Cross-docking: state of the art. Omega 40(6):827–846

    Article  Google Scholar 

  • Yu W, Egbelu PJ (2008) Scheduling of inbound and outbound trucks in cross docking systems with temporary storage. Eur J Oper Res 184(1):377–396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Sammarra.

Appendices

Appendix 1: Proof of Proposition 4

Proof

For a given set of multipliers, taking into account Proposition 3 and Theorem 1, we have

$$\begin{aligned} Z_{LR}^O(\sigma )=C_{\max }-\sum _{h \in H}\sum _{j \in J}h \sigma _{j}y_{jh}= {\left\{ \begin{array}{ll} m-\displaystyle \sum _{h=1}^mh\sigma _{[h]} &{} \text{ if } \ \displaystyle \sum _{j=1}^m \sigma _j \le 1\\ H-\displaystyle \sum _{H-m+1}^Hh\sigma _{[h]} &{} \text{ if } \ \displaystyle \sum _{j=1}^m \sigma _j > 1 \end{array}\right. } \end{aligned}$$

Let \(\delta >0\) be an increase in any component \({\hat{\jmath }}\) of \(\sigma \), \({\hat{\sigma }}=\sigma \delta e_{{\hat{\jmath }}}\) and let \({\hat{h}}\) the time slot associated with \({\hat{\jmath }}\), that is \([{\hat{h}}]={\hat{\jmath }}\). We indicate by \({\varDelta } Z^O\) the variation \(Z_{LR}^O({\hat{\sigma }})-Z_{LR}^O(\sigma )\). Three cases can occur

  1. c1)

    \(\ \ \displaystyle \sum _{j\in j}\sigma _j <1\) and \(\displaystyle \sum _{j \in J \setminus \{ {\hat{\jmath }}\}}\sigma _j + \sigma _{{\hat{\jmath }}}+\delta \le 1;\)

  2. c2)

    \(\ \ \displaystyle \sum _{j\in J}\sigma _j > 1\) , (of course it is also \(\displaystyle \sum _{j \in J \setminus \{ {\hat{\jmath }}\}}\sigma _j + \sigma _{{\hat{\jmath }}}+\delta > 1 );\)

  3. c3)

    \(\ \ \displaystyle \sum _{j\in J}\sigma _j \le 1\) and \(\displaystyle \sum _{j \in J \setminus \{ {\hat{\jmath }}\}}\sigma _j + \sigma _{{\hat{\jmath }}}+\delta > 1.\)

Case c1. If the time slot associated with \({\hat{\jmath }}\) does not change, we simply get

$$\begin{aligned} {\varDelta } Z^O =Z^O_{LR}({\hat{\sigma }})-Z^O_{LR}(\sigma )= -{\hat{h}}\delta < 0; \end{aligned}$$

conversely, let \(h_M\), \({\hat{h}}+1 \le h_M \le m\), be the newest time slot associated with \({\hat{\jmath }}\). Note that it is

$$\begin{aligned} \sigma _{[{\hat{h}}]} + \delta > \sigma _{[h_{M}]}. \end{aligned}$$
(50)

We get

$$\begin{aligned} Z_{LR}^O({\hat{\sigma }})&= m - \sum _{h=1}^{{\hat{h}}-1}h\sigma _{[h]} - \sum _{h={\hat{h}}}^{h_{M}-1}h\sigma _{[h+1]}-h_{M}(\sigma _{[{\hat{h}}]}+\delta ) - \sum _{h=h_{M}+1}^{m} h\sigma _{[h]}\\ Z_{LR}^O(\sigma )&= m - \sum _{h=1}^{m}h\sigma _{[h]} \end{aligned}$$

Therefore, from Proposition 3 and (50), it holds

$$\begin{aligned} {\varDelta } Z^O= & {} Z^O_{LR}({\hat{\sigma }})-Z^O_{LR}(\sigma )\\= & {} \sum _{h = {\hat{h}}}^{h_{M}-1}h(\sigma _{[h]}-\sigma _{[h]+1]})+h_{M}(\sigma _{[h_{M}]}-\sigma _{[{\hat{h}}]}-\delta ) <0 \end{aligned}$$

Case c2. The proof is similar to that of Case c1 and we omit it.

Case c3. Assume without loss of generality that the trucks are initially scheduled at the time slots \((1,\ldots ,m)\). By effect of the increase in \(\sigma _{{\hat{j}}}\) they will be rescheduled at the time slots \((H-m+1,\ldots ,H)\). Again we have two subcases. If the ordering of the trucks does not change, noting that it is:

$$\begin{aligned} {\hat{\sigma }}_{[H-m+h]}=\left\{ \begin{array}{ll} \sigma _{[h]}&{}\,\,\,\text{ for } \,\,h=1,\ldots ,m, \,\, h \ne {\hat{h}}\\ \sigma _{[{\hat{h}}]}+ \delta &{}\,\,\,\text{ for } \,h={\hat{h}}, \\ \end{array} \right. \end{aligned}$$

we have

$$\begin{aligned} Z_{LR}^O({\hat{\sigma }})= & {} H-\displaystyle \sum _{h=H-m+1}^{H}h{\hat{\sigma }}_{[h]}=H-\displaystyle \sum _{h=1}^{{\hat{h}}-1}(H-m+h) \sigma _{[h]}+\\&- (H-m+{\hat{h}})(\sigma _{[{\hat{h}}]} + \delta ) - \sum _{h={\hat{h}}+1}^{m}(H-m+h) \sigma _{[h]} \end{aligned}$$

while

$$\begin{aligned} Z_{LR}^O(\sigma )= m-\sum _{h=1}^m h \sigma _{[h]}=m-\displaystyle \sum _{h=1}^{{\hat{h}}-1}h \sigma _{[h]} - {\hat{h}}\sigma _{[{\hat{h}}]} - \sum _{h={\hat{h}}+1}^{m}h \sigma _{[h]}. \end{aligned}$$

Therefore, taking into account \(1-\sum _{h=1}^m \sigma _{[h]}-\delta <0\), we obtain

$$\begin{aligned} {\varDelta } Z^O= & {} Z^O_{LR}({\hat{\sigma }})-Z^O_{LR}(\sigma )\\= & {} (H-m)-(H-m)\sum _{h=1}^m \sigma _{[h]} - (H-m+{\hat{h}})\delta \\= & {} (H-m)\left( 1-\sum _{h=1}^m \sigma _{[h]}-\delta \right) -{\hat{h}}\delta <0 \end{aligned}$$

Finally, if the increase in \(\sigma _{[{\hat{h}}]}\) changes the ordering of the trucks, let \(h_{M}\) be the largest index such that \(\sigma _{[{\hat{h}}]} + \delta > \sigma _{[h_{M}]}\). Then, resorting the new sequence and taking into account that it is:

$$\begin{aligned}{\hat{\sigma }}_{[H-m+h]}=\left\{ \begin{array}{ll} \sigma _{[h]}&{}\,\,\,\text{ for } \,h=1,\ldots ,({\hat{h}}-1), \,\, \\ \sigma _{[h+1]} &{}\,\,\,\text{ for } \,h={\hat{h}},\ldots ,(h_M-1), \,\, \\ \sigma _{[{\hat{h}}]}+ \delta &{}\,\,\,\text{ for } \,h=h_M \,\, \\ \sigma _{[h]}&{}\,\,\,\text{ for } \, h=(h_M+1),\ldots ,m, \,\, \end{array} \right. \end{aligned}$$

we have:

$$\begin{aligned} Z_{LR}^O({\hat{\sigma }})= & {} H-\displaystyle \sum _{h=H-m+1}^{H}h{\hat{\sigma }}_{[h]} \\= & {} H-\sum _{h=1}^{{\hat{h}}-1}(H-m+h) \sigma _{[h]} - \sum _{h={\hat{h}}}^{h_{M}-1}(H-m+h)\sigma _{[h+1]}\\&-(H-m+h_{M})(\sigma _{[{\hat{h}}]}+\delta )+\sum _{h=h_{M} + 1}^{m}(H-m+h) \sigma _{[h]} \end{aligned}$$

and

$$\begin{aligned} Z_{LR}^O(\sigma )= & {} m-\sum _{h=1}^m h \sigma _{[h]}\\= & {} m-\sum _{h=1}^{{\hat{h}}-1}h\sigma _{[h]} - \sum _{h={\hat{h}}}^{h_{M}-1}h\sigma _{[h]}-h_{M}\sigma _{[h_{M}]}-\sum _{h=h_{M}+1}^mh\sigma _{[h]} \end{aligned}$$

Therefore,

$$\begin{aligned} {\varDelta } Z^O= & {} Z^O_{LR}({\hat{\sigma }})-Z^O_{LR}(\sigma ) \\= & {} (H-m)-(H-m)\sum _{h=1}^{m} \sigma _{[h]} \\&-\sum _{h={\bar{h}}}^{h_{M}-1}h(\sigma _{[h+1]}-\sigma _{[h]})-h_{M}(\sigma _{[{\hat{h}}]}-\sigma _{h_{[M]}})-(H-m+h_{M})\delta \\= & {} (H-m)\left( 1-\left( \sum _{h=1}^{m} \sigma _{[h]} +\delta \right) \right) - \sum _{h={\hat{h}}}^{h_{M}-1}h(\sigma _{[h+1]} -\sigma _{[h]})\\&-h_{M}(\sigma _{[{\hat{h}}]}+\delta -\sigma _{h_{[M]}})\\= & {} (H-m)\left( 1-\left( \sum _{h=1}^{m} {\hat{\sigma }}_{[h]}\right) \right) \\&- \sum _{h={\hat{h}}}^{h_{M}-1}h(\sigma _{[h+1]} -\sigma _{[h]})-h_{M}(\sigma _{[{\hat{h}}]}+\delta -\sigma _{h_{[M]}}) < 0 \end{aligned}$$

\(\square \)

Appendix 2: The instance generator Algorithm

figure e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiarello, A., Gaudioso, M. & Sammarra, M. Truck synchronization at single door cross-docking terminals. OR Spectrum 40, 395–447 (2018). https://doi.org/10.1007/s00291-018-0510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-018-0510-x

Keywords

Navigation