Skip to main content
Log in

Pharmacophore modelling and molecular dynamics simulation to identify novel molecules targeting catechol-O-methyltransferase and dopamine D3 receptor to combat Parkinson’s disease

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Parkinson’s disease is a neurological illness that slowly impairs a small number of neurons in the substantia nigra, a part of the brain. Dopamine, a substance (neurotransmitter) that disseminates signals to different regions of the brain and, when it functions correctly, coordinates smooth and balanced muscular activity, is typically produced by these cells. One-hand tremor is frequently the first sign of Parkinson’s disease. Loss of balance, stiffness, and delayed mobility are further symptoms. Proteins including catechol-O-methyltransferase and dopamine D3 receptors were taken into consideration as prospective therapeutic targets in this study. Two ligand-based pharmacophore models were generated with the help of compounds used for Parkinson’s disease which have structural similarity, screened from the first 16 compounds found in the drug bank. In the second case, 9 compounds that have similar structure to the compound istradefylline were selected. Based on docking score, intermolecular interactions, ADME (absorption, distribution, metabolism, and excretion) features, pharmacophore, and toxicity investigations, the inhibitors among the chosen compounds were found. Additionally, the chosen inhibitor underwent a 100 nanosecond molecular dynamics simulation with the two protein targets to determine its stability and binding affinity. The compound 3,4-Bis(1,3,5,6-heptatetraenyloxy) benzaldehyde was identified to be the most promising lead molecule in this analysis due to its better binding affinity, better pharmacophore properties, and greater stability. Hence, by targeting both specified proteins, the compound 3,4-Bis(1,3,5,6-heptatetraenyloxy) benzaldehyde should be beneficial against Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Ball N, Teo W-P, Chandra S, Chapman J (2019) Parkinson’s disease and the environment. Front Neurol 10:218

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  3. de Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    Article  PubMed  Google Scholar 

  4. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Article  PubMed  Google Scholar 

  6. Cruz-Vicente P, Gonçalves AM, Ferreira O, Queiroz JA, Silvestre S, Passarinha LA, Gallardo E (2021) Discovery of small molecules as membrane-bound catechol-o-methyltransferase inhibitors with interest in parkinson’s disease: Pharmacophore modeling, molecular docking and in vitro experimental validation studies. Pharmaceuticals (Basel) 15(1):51

    Article  PubMed  Google Scholar 

  7. Patel CN, Georrge JJ, Modi KM, Narechania MB, Patel DP, Gonzalez FJ, Pandya HA (2017) Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer’s disease. J Biomol Struct Dyn 36(15):3938–3957

    Article  PubMed  PubMed Central  Google Scholar 

  8. Joyce JN (2001) Dopamine D3 receptor as a therapeutic target for antipsychotic and antiparkinsonian drugs. Pharmacol Ther 90(2–3):231–259

    Article  CAS  PubMed  Google Scholar 

  9. Wang S, Wacker D, Levit A, Che T, Betz RM, McCorvy JD, Venkatakrishnan AJ, Huang X-P, Dror RO, Shoichet BK, Roth BL (2017) D(4) dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 358(6361):381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun B, Feng D, Chu ML-H, Fish I, Lovera S, Sands ZA, Kelm S, Valade A, Wood M, Ceska T, Kobilka TS, Lebon F, Kobilka BK (2021) Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nat Commun 12(1):3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khan ZU, Gutiérrez A, Martín R, Peñafiel A, Rivera A, de la Calle A (2000) Dopamine D5 receptors of rat and human brain. Neuroscience 100(4):689–699

    Article  CAS  PubMed  Google Scholar 

  12. Milligan G, Kostenis E (2006) Heterotrimeric g-proteins: a short history. Br J Pharmacol 147(S1):46–55

    Article  Google Scholar 

  13. Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL (2018) Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 555(7695):269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahmed SSSJ, Ahameethunisa A, Santosh W (2010) QSAR and pharmacophore modeling of 4-arylthieno [3, 2-d] pyrimidine derivatives against adenosine receptor of Parkinson’s disease. J Theor Comput Chem 09(06):975–991

    Article  CAS  Google Scholar 

  15. Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15(11–12):444–450

    Article  CAS  PubMed  Google Scholar 

  16. Schaller D, Šribar D, Noonan T, Deng L, Nguyen TN, Pach S, Machalz D, Bermudez M, Wolber G (2020) Next generation 3D pharmacophore modeling. WIREs Comput Mole Sci 10(4):1468

    Article  Google Scholar 

  17. Kaserer T, Beck KR, Akram M, Odermatt A, Schuster D (2015) Pharmacophore models and pharmacophore-based virtual screening: concepts and applications exemplified on hydroxysteroid dehydrogenases. Molecules 20(12):22799–22832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cummins L, Cates ME (2022) Istradefylline: a novel agent in the treatment of “off’’ episodes associated with levodopa/carbidopa use in parkinson disease. Ment Health Clin 12(1):32–36

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reva BA, Finkelstein AV, Skolnick J (1998) What is the probability of a chance prediction of a protein structure with an RMSD of 6 å? Fold Des 3(2):141–147

    Article  CAS  PubMed  Google Scholar 

  20. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  21. Benet LZ, Hosey CM, Ursu O, Oprea TI (2016) BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev 101:89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1(3):223–236

    Article  PubMed  Google Scholar 

  23. Krewski D, Acosta D Jr, Andersen M, Anderson H, Bailar JC 3rd, Boekelheide K, Brent R, Charnley G, Cheung VG, Green S Jr, Kelsey KT, Kerkvliet NI, Li AA, McCray L, Meyer O, Patterson RD, Pennie W, Scala RA, Solomon GM, Stephens M, Yager J, Zeise L (2010) Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B Crit Rev 13(2–4):51–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Samdani A, Vetrivel U (2018) POAP: a GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening. Comput Biol Chem 74:39–48

    Article  CAS  PubMed  Google Scholar 

  26. Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106(5):1589–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fatemi SM, Fatemi SJ, Abbasi Z (2020) Pamam dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies. Polym Bull 77(12):6671–6691. https://doi.org/10.1007/s00289-019-03076-4

    Article  CAS  Google Scholar 

  28. Al-Raeei M, El-Daher MS (2021) Temperature dependence of the specific volume of Lennard-Jones potential and applying in case of polymers and other materials. Polym Bull 78(3):1453–1463. https://doi.org/10.1007/s00289-020-03166-8

    Article  CAS  Google Scholar 

  29. Alperstein D, Knani D, Goichman A, Narkis M (2012) Determination of plasticizers efficiency for nylon by molecular modeling. Polym Bull 68(7):1977–1988. https://doi.org/10.1007/s00289-012-0705-2

    Article  CAS  Google Scholar 

  30. Sahihi M, Gaci F, Navizet I (2021) Identification of new alpha-synuclein fibrillogenesis inhibitor using in silico structure-based virtual screening. J Mol Graph Model 108(108010):108010

    Article  CAS  PubMed  Google Scholar 

  31. Kufareva I, Abagyan R (2012) Methods of protein structure comparison. Methods Mol Biol 857:231–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Services CB (2013) CD ComputaBio. Accessed on May 16th, 2023. https://www.computabio.com/rmsd-rmsf-analysis-service.html

  33. Sargsyan K, Grauffel C, Lim C (2017) How molecular size impacts RMSD applications in molecular dynamics simulations. J Chem Theory Comput 13(4):1518–1524

    Article  CAS  PubMed  Google Scholar 

  34. Reva BA, Finkelstein AV, Skolnick J (1998) What is the probability of a chance prediction of a protein structure with an RMSD of 6 a? Fold Des 3(2):141–147

    Article  CAS  PubMed  Google Scholar 

  35. Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE 10(3):0119264

    Article  Google Scholar 

  36. Fuglebakk E, Echave J, Reuter N (2012) Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics 28(19):2431–2440

    Article  CAS  PubMed  Google Scholar 

  37. Jolla L (2018) BioChemCoRe 2018. Accessed on June 3rd, 2023. https://ctlee.github.io/BioChemCoRe-2018/rmsd

  38. Gowers R, Linke M, Barnoud J, Reddy T, Melo M, Seyler SL, Dotson D, Domanski J, Buchoux S, Kenney I (2016) Mdanalysis: a python package for the rapid analysis of molecular dynamics simulations

  39. Durdagi S, Duff HJ, Noskov SY (2011) Combined receptor and ligand-based approach to the universal pharmacophore model development for studies of drug blockade to the hERG1 pore domain. J Chem Inf Model 51(2):463–474

    Article  CAS  PubMed  Google Scholar 

  40. Sen D, Chatterjee T (2013) Pharmacophore modeling and 3d quantitative structure-activity relationship analysis of febrifugine analogues as potent antimalarial agent. J Adv Pharm Technol Res 4:50–60. https://doi.org/10.4103/2231-4040.107501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thangapandian S, John S, Lee Y, Kim S, Lee KW (2011) Dynamic structure-based pharmacophore model development: a new and effective addition in the histone deacetylase 8 (HDAC8) inhibitor discovery. Int J Mol Sci 12(12):9440–9462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Butina D, Segall MD, Frankcombe K (2002) Predicting ADME properties in silico: methods and models. Drug Discov Today 7(11):83–8

    Article  Google Scholar 

  43. Toropov AA, Toropova AP, Raska I Jr, Leszczynska D, Leszczynski J (2014) Comprehension of drug toxicity: software and databases. Comput Biol Med 45:20–25

    Article  CAS  PubMed  Google Scholar 

  44. Crisan L, Istrate D, Bora A, Pacureanu L (2021) Virtual screening and drug repurposing experiments to identify potential novel selective MAO-B inhibitors for parkinson’s disease treatment. Mol Divers 25(3):1775–1794

    Article  CAS  PubMed  Google Scholar 

  45. Li P, Zhao L (2007) Developing early formulations: practice and perspective. Int J Pharm 341(1–2):1–19

    Article  CAS  PubMed  Google Scholar 

  46. Pandey A (2003) North East BioLab. Accessed on May 22nd, 2023. https://www.nebiolab.com/drug-discovery-and-development-process/

  47. Bonifácio MJ, Archer M, Rodrigues ML, Matias PM, Learmonth DA, Carrondo MA, Soares-Da-Silva P (2002) Kinetics and crystal structure of catechol-o-methyltransferase complex with co-substrate and a novel inhibitor with potential therapeutic application. Mol Pharmacol 62(4):795–805

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, and data collection and analysis were performed by AJ, SM, NMT, MC, ADM, and AJ. The first draft of the manuscript was written by NMT and SM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amitha Joy.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors informed the consent for publication.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, A., Menon, S., Thomas, N.M. et al. Pharmacophore modelling and molecular dynamics simulation to identify novel molecules targeting catechol-O-methyltransferase and dopamine D3 receptor to combat Parkinson’s disease. Polym. Bull. (2023). https://doi.org/10.1007/s00289-023-05087-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-023-05087-8

Keywords

Navigation