Skip to main content
Log in

Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Membrane technologies have great potential to treat polluted water due to their characteristic features such as high porosity, flexibility and large mechanical strength. The present review summarizes the most elevated development on fabrication and modification of membrane technologies artificially and naturally, emphasizing their advanced progress, challenges and future improvement in water treatment applications. The article compares the proficiency of different membranes made up of natural or artificial polymers for wastewater treatment and discusses their effectiveness for removing dreads, toxic and widespread heavy metal ions. We compare the electrospun technique against other fabrication techniques, such as interfacial polymerization, phase inversion, stretching, blending and track etching for the preparation of membrane and mainly focusing on electrospinning technique for membrane synthesis which exhibits intriguing properties like high specific surface area, high porosity and robust mechanical strength. The roles of both artificial, as well as natural polymers in water purification, have been summarized. The electrospun nanofiber membrane offers a viable and effective means for wastewater treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright Clearance Center License5070930249768

Fig. 6

Copyright Clearance Center License 5,070,930,617,944

Fig.7
Fig. 8

Copyright Clearance Center License Number 5071200809176

Fig. 9

Copyright Clearance Center License Number5071201344515

Fig.10

Copyright Clearance Center License Number5071210072387

Fig. 11

Copyright Clearance Center License Number 5071210412743

Fig. 12

Copyright Clearance Center License Number5071210705548

Fig. 13

Copyright Clearance Center License Number 5107471365697

Fig. 14
Fig. 15
Fig. 16

Copyright Clearance Center License Number5071210964791

Similar content being viewed by others

References

  1. Shirazi MMA, Kargari A, Shirazi MJA (2012) Direct contact membrane distillation for seawater desalination. Desalin Water Treat 49(1–3):368–375

    CAS  Google Scholar 

  2. Koop SH, van Leeuwen CJ (2017) The challenges of water, waste and climate change in cities. Environ Dev Sustain 19(2):385–418

    Google Scholar 

  3. Suja P et al (2017) Electrospun nanofibrous membranes for water purification. Polym Rev 57(3):467–504

    CAS  Google Scholar 

  4. Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30

    CAS  Google Scholar 

  5. Ying Y et al (2017) Recent advances of nanomaterial-based membrane for water purification. Appl Mater Today 7:144–158

    Google Scholar 

  6. Schwarzenbach RP et al (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077

    CAS  PubMed  Google Scholar 

  7. Kolpin DW et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    CAS  PubMed  Google Scholar 

  8. Camacho LM et al (2013) Advances in membrane distillation for water desalination and purification applications. Water 5(1):94–196

    Google Scholar 

  9. Rana P et al (2022) Recent progress in piezoelectric properties of lead-free perovskite sodium potassium niobate. AIP Conf Proc 2357(1):050006

    CAS  Google Scholar 

  10. Geise GM et al (2010) Water purification by membranes: the role of polymer science. J Polym Sci Part B Polym Phys 48(15):1685–1718

    CAS  Google Scholar 

  11. Shandilya M et al (2018) Structural and dielectric relaxor properties of Ba1-xMgxTiO3 ceramics prepared through a hydrothermal route. Adv Appl Ceram 117(5):255–263

    Google Scholar 

  12. Shandilya M, Kaur GA (2019) Low temperature crystal growth of lead-free complex perovskite nano-structure by using sol-gel hydrothermal process. J Solid State Chem 280:120988

    CAS  Google Scholar 

  13. Kumari P et al High dielectric materials for supercapacitors. Smart materials for smart living: p. 95

  14. Kaur GA et al (2021) Structural and optical amendment of PVDF into CQDs through high temperature calcination process. Mater Lett 304:130616

    CAS  Google Scholar 

  15. Kaur GA et al (2021) Structural and ferroelectric growth of Ba0.85Mg0.15TiO3–Ga2O3 ceramic through hydrothermal method. J Mater Sci Mater Electr 32(18):23631–23644

    CAS  Google Scholar 

  16. Aamir M et al (2019) Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: a review. Int J Adv Manuf Technol 105(5–6):2289–2308

    Google Scholar 

  17. Li N (2014) The Application of Polymer Materials with High Mechanical Properties in Competitive Sports. In Advanced Materials Research. Trans Tech Publ

  18. Farahani MHDA, Vatanpour V (2019) Polymer/carbon nanotubes mixed matrix membranes for water purification. Nanoscale Materials in Water Purification. Elsevier, pp 87–110

    Google Scholar 

  19. Pandele A et al (2017) Synthesis and characterization of cellulose acetate-hydroxyapatite micro and nano composites membranes for water purification and biomedical applications. Vacuum 146:599–605

    CAS  Google Scholar 

  20. Guo Y et al (2017) Engineering flame retardant biodegradable polymer nanocomposites and their application in 3D printing. Polym Degrad Stab 137:205–215

    CAS  Google Scholar 

  21. Tan K et al (2005) Selective laser sintering of biocompatible polymers for applications in tissue engineering. Bio-med Mater Eng 15(1,2):113–124

    CAS  Google Scholar 

  22. Guelcher SA (2008) Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev 14(1):3–17

    CAS  PubMed  Google Scholar 

  23. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766–1782

    CAS  Google Scholar 

  24. Thakur P et al (2022) Nano-insecticide: synthesis, characterization, and evaluation of insecticidal activity of ZnO NPs against Spodoptera litura and Macrosiphum euphorbiae. Appl Nanosci 1:1–16

    Google Scholar 

  25. Shandilya M, Rai R, Singh J (2016) Hydrothermal technology for smart materials. Adv Appl Ceram 115(6):354–376

  26. Kaur GA, Kumar S, Shandilya M (2020) Fabrication of piezoelectric nanogenerator based on P(VDF-HFP) electrospun nanofiber mat-impregnated lead-free BCZT nanofillers. J Mater Sci Mater Electron 31(22):20303–20314

    Google Scholar 

  27. Mulder M (2012) Basic principles of membrane technology. Springer Science & Business Media, Berlin

    Google Scholar 

  28. Drioli E, Giorno L (2009) Membrane operations: innovative separations and transformations. John Wiley & Sons, Hoboken

    Google Scholar 

  29. Marchese J et al (2003) Fouling behaviour of polyethersulfone UF membranes made with different PVP. J Membr Sci 211(1):1–11

    CAS  Google Scholar 

  30. Chuang W-Y et al (2000) The effect of polymeric additives on the structure and permeability of poly (vinyl alcohol) asymmetric membranes. Polymer 41(15):5633–5641

    CAS  Google Scholar 

  31. Aburabie J, Villalobos LF, Peinemann KV (2017) Composite membrane formation by combination of reaction-induced and nonsolvent-induced phase separation. Macromol Mater Eng 302(9):1700131

    Google Scholar 

  32. Trommer K, Morgenstern B (2010) Nonrigid microporous PVC sheets: preparation and properties. J Appl Polym Sci 115(4):2119–2126

    CAS  Google Scholar 

  33. Kim IC, Yoon HG, Lee KH (2002) Formation of integrally skinned asymmetric polyetherimide nanofiltration membranes by phase inversion process. J Appl Polym Sci 84(6):1300–1307

    CAS  Google Scholar 

  34. Sarada T, Sawyer L, Ostler M (1983) Three dimensional structure of Celgard® microporous membranes. J Membr Sci 15(1):97–113

    CAS  Google Scholar 

  35. Souhaimi MK, Matsuura T (2011) Membrane distillation: principles and applications

  36. Zhao W et al (2011) Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles. J Membr Sci 369(1–2):258–266

    CAS  Google Scholar 

  37. Tanahashi M (2010) Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials 3(3):1593–1619

    CAS  PubMed Central  Google Scholar 

  38. Verma D, Goh KL (2019) Functionalized Graphene-Based Nanocomposites for Energy Applications. Functionalized Graphene Nanocomposites and their Derivatives. Elsevier, Hoboken, pp 219–243

    Google Scholar 

  39. Anandhan S, Bandyopadhyay S (2011) Polymer nanocomposites: from synthesis to applications. Nanocompos Polym Anal Methods 1:1–28

    Google Scholar 

  40. Lau W, Ismail A (2011) Progress in interfacial polymerization technique on composite membrane preparation. In Proceedings of the 2nd International Conference on Environmental Engineering and Applications, Shanghai, China

  41. Nthunya LN et al (2019) A review of nanoparticle-enhanced membrane distillation membranes: membrane synthesis and applications in water treatment. J Chem Technol Biotechnol 94(9):2757–2771

    CAS  Google Scholar 

  42. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425

    CAS  Google Scholar 

  43. Kaur GA et al (2020) Modification of structural and magnetic properties of Co05Ni05Fe2O4 nanoparticles embedded Polyvinylidene Fluoride nanofiber membrane via electrospinning method. Nano-Struct Nano-Objects 22:100428

    CAS  Google Scholar 

  44. Thakur S, Shandilya M, Rai R Development of double perovskite electroceramics. Smart materials for smart living, p. 137

  45. Gupta N et al (2022) Increasing the efficiency of reduced graphene oxide obtained via high temperature electrospun calcination process for the electrochemical detection of dopamine. J Electroanal Chem 904:115904

    CAS  Google Scholar 

  46. Theron J et al (2010) Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications. Acta Biomater 6(7):2434–2447

    CAS  PubMed  Google Scholar 

  47. Park JH, Braun PV (2010) Coaxial electrospinning of self-healing coatings. Adv Mater 22(4):496–499

    CAS  PubMed  Google Scholar 

  48. Chronakis IS et al (2006) Encapsulation and selective recognition of molecularly imprinted theophylline and 17β-estradiol nanoparticles within electrospun polymer nanofibers. Langmuir 22(21):8960–8965

    CAS  PubMed  Google Scholar 

  49. Ner Y et al (2009) White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer. Angew Chem Int Ed 48(28):5134–5138

    CAS  Google Scholar 

  50. Joshi P et al (2010) Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 2(12):3572–3577

    CAS  PubMed  Google Scholar 

  51. van der Zande M et al (2010) In vivo magnetic resonance imaging of the distribution pattern of gadonanotubes released from a degrading poly (lactic-co-glycolic acid) scaffold. Tissue Eng Part C Methods 17(1):19–26

    PubMed  Google Scholar 

  52. Hong Y et al (2006) In situ growth of ZnO nanocrystals from solid electrospun nanofiber matrixes. Langmuir 22(17):7331–7334

    CAS  PubMed  Google Scholar 

  53. Sisson K et al (2010) Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res, Part A 94(4):1312–1320

    Google Scholar 

  54. Tijing LD et al (2013) Antibacterial tourmaline nanoparticles/polyurethane hybrid mat decorated with silver nanoparticles prepared by electrospinning and UV photoreduction. Curr Appl Phys 13(1):205–210

    Google Scholar 

  55. Jin G et al (2011) Photosensitive materials and potential of photocurrent mediated tissue regeneration. J Photochem Photobiol, B 102(2):93–101

    CAS  PubMed  Google Scholar 

  56. Tamanini E et al (2010) Cyclam-based “clickates”: homogeneous and heterogeneous fluorescent sensors for Zn (II). Inorg Chem 49(8):3789–3800

    CAS  PubMed  Google Scholar 

  57. Zong X et al (2005) Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26(26):5330–5338

    CAS  PubMed  Google Scholar 

  58. Gauthaman K et al (2009) Nanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells. J Cell Mol Med 13(9b):3475–3484

    PubMed  PubMed Central  Google Scholar 

  59. Ye L et al (2011) Heparin-conjugated PCL scaffolds fabricated by electrospinning and loaded with fibroblast growth factor 2. J Biomater Sci Polym Ed 22(1–3):389–406

    CAS  PubMed  Google Scholar 

  60. Liu H et al (2013) Electrospinning of nanofibers for tissue engineering applications. J Nanomater 2013:3

    Google Scholar 

  61. Shandilya M et al (2017) Effect of addition of zinc ferrite on dielectric and magnetic properties of (Ba, Ca) TiO3 ceramics. Integr Ferroelectr 185(1):147–154

    CAS  Google Scholar 

  62. Tan X, Rodrigue D (2019) A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly (Vinylidene Fluoride). Polymers. 11

  63. Bassyouni M et al (2019) A review of polymeric nanocomposite membranes for water purification. J Ind Eng Chem 73:19–46

    CAS  Google Scholar 

  64. Martínez-Izquierdo L et al (2021) Phase inversion method for the preparation of Pebax® 3533 thin film membranes for CO2/N2 separation. J Environ Chem Eng 9(4):105624

    Google Scholar 

  65. Zhu H et al (2013) Preparation and properties of PTFE hollow fiber membranes for desalination through vacuum membrane distillation. J Membr Sci 446:145–153

    CAS  Google Scholar 

  66. Tabatabaei SH, Carreau PJ, Ajji A (2008) Microporous membranes obtained from polypropylene blend films by stretching. J Membr Sci 325(2):772–782

    CAS  Google Scholar 

  67. Saleh TA, Gupta VK (2016) Chapter 1—An overview of membrane science and technology, in nanomaterial and polymer membranes, TA Saleh and VK Gupta, Editors. Elsevier. p. 1–23

  68. Rane AV et al (2018) Chapter 5— Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, In Synthesis of Inorganic Nanomaterials, S Mohan Bhagyaraj, et al., Editors. Woodhead Publishing. p. 121–139.

  69. Kouras N et al (2017) Macro-porous ceramic supports for membranes prepared from quartz sand and calcite mixtures. J Eur Ceram Soc 37(9):3159–3165

    CAS  Google Scholar 

  70. Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28

    CAS  Google Scholar 

  71. Warsinger DM et al (2018) A review of polymeric membranes and processes for potable water reuse. Prog Polym Sci 81:209–237

    CAS  Google Scholar 

  72. Chun Y et al (2017) A short review of membrane fouling in forward osmosis processes. Membranes 7(2):30

    PubMed  PubMed Central  Google Scholar 

  73. Lau W et al (2012) A recent progress in thin film composite membrane: a review. Desalination 287:190–199

    CAS  Google Scholar 

  74. Lal M et al (2018) Study of structural, electrical and magnetic properties of 1− x (Ba0. 96Ca0. 04TiO3)− x (BiFeO3) ceramics composites. J Mater Sci: Mater Electron 29(16):13984–14002

    Google Scholar 

  75. Pendergast MM, Hoek EM (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971

    CAS  Google Scholar 

  76. Shandilya M et al (2021) Low temperature consequence on structural and impedance properties of BST ceramics via sol-hydrothermal method. Mater Chem Phys 263:124422

    CAS  Google Scholar 

  77. Kumar S et al (2022) Effect of excessive amount of (Na, K) ion ratio on structural, optical and electrical properties of K0. 5Na0. 5NbO3 ceramics prepared by solid-state route. J Renew Sustain Energy 45(1):1-11

    Google Scholar 

  78. Zhang TC et al (2012) Membrane technology and environmental applications. American Society of Civil Engineers, Reston

    Google Scholar 

  79. Li Z et al (2016) A novel polyvinylidene fluoride tree-like nanofiber membrane for microfiltration. Nanomaterials 6(8):152

    PubMed  PubMed Central  Google Scholar 

  80. Antony A, Blackbeard J, Leslie G (2012) Removal efficiency and integrity monitoring techniques for virus removal by membrane processes. Crit Rev Environ Sci Technol 42(9):891–933

    Google Scholar 

  81. Altintas Z et al (2016) Development of functionalized nanostructured polymeric membranes for water purification. Chem Eng J 300:358–366

    CAS  Google Scholar 

  82. Sharma V et al (2020) Growth mechanism of rGO/CDs by electrospun calcination process: Structure and application. FlatChem 24:100195

    CAS  Google Scholar 

  83. Zhao Z et al (2012) High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds. J Membr Sci 394:209–217

    Google Scholar 

  84. Razzaghi MH et al (2014) Morphological and separation performance study of PVDF/CA blend membranes. J Membr Sci 470:547–557

    Google Scholar 

  85. Nthunya LN et al (2019) Fouling-resistant PVDF nanofibre membranes for the desalination of brackish water in membrane distillation. Sep Purif Technol 228:115793

    CAS  Google Scholar 

  86. Gopakumar DA et al (2019) Carbon dioxide plasma treated PVDF electrospun membrane for the removal of crystal violet dyes and iron oxide nanoparticles from water. Nano-Structures & Nano-Objects 18:100268

    Google Scholar 

  87. Gopakumar DA et al (2017) Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal. ACS Sustain Chem Eng 5(2):2026–2033

    CAS  Google Scholar 

  88. Kaur G et al (2020) Effect of addition of Ga2O3 on structural and morphological properties of Ba0.85Ca0.15Zr0.10Ti0.90O3 by sol-hydrothermal method. AIP Conference Proceedings 2357(1):050001

    CAS  Google Scholar 

  89. Gopi S et al (2017) Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine. Carbohyd Polym 165:115–122

    CAS  Google Scholar 

  90. Srivastava HP et al (2011) Performance of modified poly (vinylidene fluoride) membrane for textile wastewater ultrafiltration. Desalination 282:87–94

    CAS  Google Scholar 

  91. An AK et al (2016) High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation. Water Res 103:362–371

    CAS  PubMed  Google Scholar 

  92. Zeng G et al (2016) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J Hazard Mater 317:60–72

    CAS  PubMed  Google Scholar 

  93. Zhang J et al (2017) Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chem Eng J 307:643–649

    CAS  Google Scholar 

  94. Haider S et al (2015) Fabrication of the diethylenetriamine grafted polyacrylonitrile electrospun nanofibers membrane for the aqueous removal of cationic dyes. Sci Adv Mater 7(2):309–318

    CAS  Google Scholar 

  95. Wang Q et al (2012) Removal of a cationic dye by adsorption/photodegradation using electrospun PAN/O-MMT composite nanofibrous membranes coated with. Int J Photoenergy 2012:1–8

    Google Scholar 

  96. Qayum A et al (2019) Efficient decontamination of multi-component wastewater by hydrophilic electrospun PAN/AgBr/Ag fibrous membrane. Chem Eng J 361:1255–1263

    CAS  Google Scholar 

  97. Hou J et al (2019) Highly controlled integration of Graphene Oxide into PAN nanofiber membranes. Appl Sci 9(5):962

    CAS  Google Scholar 

  98. Khalil A et al (2019) Surface modified of polyacrylonitrile nanofibers by TiO2/MWCNT for photodegradation of organic dyes and pharmaceutical drugs under visible light irradiation. Environ Res 179:108788

    CAS  PubMed  Google Scholar 

  99. Cao X et al (2013) Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification. Desalination 316:120–126

    CAS  Google Scholar 

  100. Scharnagl N, Buschatz H (2001) Polyacrylonitrile (PAN) membranes for ultra-and microfiltration. Desalination 139(1–3):191–198

    CAS  Google Scholar 

  101. Liu X, Ma H, Hsiao BS (2019) Interpenetrating Nanofibrous Composite Membranes for Water Purification. ACS Appl Nano Mater

  102. Chaúque EF et al (2016) Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents. Appl Surf Sci 369:19–28

    Google Scholar 

  103. Abdel-Mottaleb M et al (2019) High performance of PAN/GO-ZnO composite nanofibers for photocatalytic degradation under visible irradiation. J Mech Behav Biomed Mater 96:118–124

    CAS  PubMed  Google Scholar 

  104. Wang H et al (2014) Preparation, characterization of electrospun meso-hydroxylapatite nanofibers and their sorptions on Co (II). J Hazard Mater 265:158–165

    CAS  PubMed  Google Scholar 

  105. Çifci C, Kaya A (2010) Preparation of poly (vinyl alcohol)/cellulose composite membranes for metal removal from aqueous solutions. Desalination 253(1–3):175–179

    Google Scholar 

  106. Yeom C, Lee KH (1998) Characterization of sodium alginate and poly (vinyl alcohol) blend membranes in pervaporation separation. J Appl Polym Sci 67(5):949–959

    CAS  Google Scholar 

  107. Hallaji H, Keshtkar AR, Moosavian MA (2015) A novel electrospun PVA/ZnO nanofiber adsorbent for U (VI), Cu (II) and Ni (II) removal from aqueous solution. J Taiwan Inst Chem Eng 46:109–118

    CAS  Google Scholar 

  108. Thakur AK et al (2019) Laser-Induced Graphene–PVA Composites as Robust Electrically Conductive Water Treatment Membranes. ACS Appl Mater Interfaces 11(11):10914–10921

    CAS  PubMed  Google Scholar 

  109. Zhang W et al (2019) Electrospun lignin-based composite nanofiber membrane as high-performance absorbent for water purification. Int J Biol Macromol 141:747–755

    CAS  PubMed  Google Scholar 

  110. Sun H et al (2019) Fabrication of ZrC/PVA-co-PE NF composite membranes with photo-thermal conversion for solar desalination. Compos Commun 13:151–155

    Google Scholar 

  111. Yang G et al (2019) Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering. J Membr Sci 579:40–51

    CAS  Google Scholar 

  112. Li X et al (2014) Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. J Membr Sci 471:118–129

    CAS  Google Scholar 

  113. Zhang R et al (2019) High-performance sulfosuccinic acid cross-linked PVA composite pervaporation membrane for desalination. Environ Technol 40(3):312–320

    CAS  PubMed  Google Scholar 

  114. Sun J et al (2019) A low cost paper tissue-based PDMS/SiO2 composite for both high efficient oil absorption and water-in-oil emulsion separation. J Clean Prod, 118814

  115. An AK et al (2017) PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J Membr Sci 525:57–67

    CAS  Google Scholar 

  116. Lee CH et al (2017) Water purification: oil–water separation by nanotechnology and environmental concerns. Environ Sci Nano 4(3):514–525

    CAS  Google Scholar 

  117. Thakur s et al (2020) Growth mechanism and characterization of CuO nanostructure as a potent antimicrobial agent. Surfaces and Interfaces 200:100551

    CAS  Google Scholar 

  118. Li S et al (2013) Preparation of PDMS membrane using water as solvent for pervaporation separation of butanol–water mixture. Green Chem 15(8):2180–2190

    CAS  Google Scholar 

  119. Peng F et al (2006) Removing benzene from aqueous solution using CMS-filled PDMS pervaporation membranes. Sep Purif Technol 48(3):229–234

    CAS  Google Scholar 

  120. Kang H et al (2020) Polydopamine and poly (dimethylsiloxane) modified superhydrophobic fiberglass membranes for efficient water-in-oil emulsions separation. J Colloid Interface Sci 559:178–185

    CAS  PubMed  Google Scholar 

  121. Scott A, Gupta R, Kulkarni GU (2010) A simple water-based synthesis of Au Nanoparticle/PDMS composites for water purification and targeted drug release. Macromol Chem Phys 211(15):1640–1647

    CAS  Google Scholar 

  122. Zhang SQ, Fouda A, Matsuura T (1992) A study of pervaporation of aqueous benzyl alcohol solution by polydimethylsiloxane membrane. J Membr Sci 70(2–3):249–255

    CAS  Google Scholar 

  123. Li L et al (2004) Composite PDMS membrane with high flux for the separation of organics from water by pervaporation. J Membr Sci 243(1–2):177–187

    CAS  Google Scholar 

  124. Chen Y et al (2013) Biofouling control of halloysite nanotubes-decorated polyethersulfone ultrafiltration membrane modified with chitosan-silver nanoparticles. Chem Eng J 228:12–20

    CAS  Google Scholar 

  125. Chen Y et al (2012) Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions. Chem Eng J 210:298–308

    CAS  Google Scholar 

  126. Ma J et al (2017) Composite ultrafiltration membrane tailored by MOF@ GO with highly improved water purification performance. Chem Eng J 313:890–898

    CAS  Google Scholar 

  127. Zhang W et al (2016) A facile TiO 2/PVDF composite membrane synthesis and their application in water purification. J Nanopart Res 18(1):31

    CAS  Google Scholar 

  128. Jang W et al (2015) PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications. RSC Adv 5(58):46711–46717

    CAS  Google Scholar 

  129. Lee J-W et al (2014) Fouling-tolerant nanofibrous polymer membranes for water treatment. ACS Appl Mater Interfaces 6(16):14600–14607

    CAS  PubMed  Google Scholar 

  130. Attia H et al (2017) Superhydrophobic electrospun membrane for heavy metals removal by air gap membrane distillation (AGMD). Desalination 420:318–329

    CAS  Google Scholar 

  131. Yu H et al (2020) Weak-reduction graphene oxide membrane for improving water purification performance. J Mater Sci Technol 39:106–112

    CAS  Google Scholar 

  132. Xuan L et al (2020) In situ synthesizing silver nanoparticels by bio-derived gallic acid to enhance antimicrobial performance of PVDF membrane. Sep Purif Technol 251:117381

    CAS  Google Scholar 

  133. Remanan S et al (2021) Phase transited lysozyme particles and MoS2 nanosheets modified elastomer-like antibacterial and antifouling microfiltration membrane derived from poly(ethylene-co-methyl acrylate)/poly(vinylidene fluoride) (EMA/PVDF) blend for water purification application. Microporous Mesoporous Mater 316:110945

    CAS  Google Scholar 

  134. Huang Z et al (2021) Dual-layer membranes with a thin film hydrophilic MOF/PVA nanocomposite for enhanced antiwetting property in membrane distillation. Desalination 518:115268

    CAS  Google Scholar 

  135. Behdarvand F et al (2021) Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment. J Environ Chem Eng 9(1):104650

    CAS  Google Scholar 

  136. Mahanta N, Valiyaveettil S (2013) Functionalized poly (vinyl alcohol) based nanofibers for the removal of arsenic from water. RSC Adv 3(8):2776–2783

    CAS  Google Scholar 

  137. Teng M et al (2011) Electrospun cyclodextrin-functionalized mesoporous polyvinyl alcohol/SiO2 nanofiber membranes as a highly efficient adsorbent for indigo carmine dye. Colloids Surf, A 385(1):229–234

    CAS  Google Scholar 

  138. Padil VVT, Černík M (2014) Tree gum based electrospun nanofibre membranes: process optimization, characterization and environmental application. Nanocon, 1: 1–6

  139. Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI) and thorium(IV) removal from aqueous solution. Chem Eng J 220:161–171

    CAS  Google Scholar 

  140. Li X, Li Y, Ye Z (2011) Preparation of macroporous bead adsorbents based on poly (vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution. Chem Eng J 178:60–68

    CAS  Google Scholar 

  141. Lin J et al (2016) Enhancement of polyethersulfone (PES) membrane doped by monodisperse Stöber silica for water treatment. Chem Eng Process Process Intensif 107:194–205

    CAS  Google Scholar 

  142. Peydayesh M, Mohammadi T, Nikouzad SK (2020) A positively charged composite loose nanofiltration membrane for water purification from heavy metals. J Membr Sci 611:118205

    CAS  Google Scholar 

  143. Amiri S et al (2020) Fabrication and characterization of a novel polyvinyl alcohol-graphene oxide-sodium alginate nanocomposite hydrogel blended PES nanofiltration membrane for improved water purification. Sep Purif Technol 250:117216

    CAS  Google Scholar 

  144. Shen L et al (2012) Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes. Desalination 293:21–29

    CAS  Google Scholar 

  145. Mansourizadeh A, Javadi Azad A (2014) Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil–water separation. J Polym Res 21(3):375

    Google Scholar 

  146. Ghaemi N, Daraei P, Akhlaghi FS (2018) Polyethersulfone nanofiltration membrane embedded by chitosan nanoparticles: fabrication, characterization and performance in nitrate removal from water. Carbohyd Polym 191:142–151

    CAS  Google Scholar 

  147. Chauke NM, Moutloali RM, Ramontja J (2020) Development of ZSM-22/polyethersulfone membrane for effective salt rejection. Polymers 12(7):1446

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Selvan BK et al (2022) Synthesis and characterization of nano zerovalent iron-kaolin clay (nZVI-Kaol) composite polyethersulfone (PES) membrane for the efficacious As2O3 removal from potable water samples. Chemosphere 288:132405

    CAS  PubMed  Google Scholar 

  149. Li B et al (2021) Heterogeneous Ag@ZnO nanorods decorated on polyacrylonitrile fiber membrane for enhancing the photocatalytic and antibacterial properties. Colloid Interface Sci Commun 45:100543

    CAS  Google Scholar 

  150. Makeswari M, Saraswathi P (2020) Photo catalytic degradation of methylene blue and methyl orange from aqueous solution using solar light onto chitosan bi-metal oxide composite. SN Appl Sci 2(3):336

    CAS  Google Scholar 

  151. Jang W et al (2020) Polyacrylonitrile nanofiber membrane modified with Ag/GO composite for water purification system. Polymers 12(11):2441

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Makaremi M, De Silva RT, Pasbakhsh P (2015) Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability. J Phys Chem C 119(14):7949–7958

    CAS  Google Scholar 

  153. Wang J et al (2016) Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Appl Mater Interfaces 8(9):6211–6218

    CAS  PubMed  Google Scholar 

  154. Mei Y et al (2012) Surface modification of polyacrylonitrile nanofibrous membranes with superior antibacterial and easy-cleaning properties through hydrophilic flexible spacers. J Membr Sci 417–418:20–27

    Google Scholar 

  155. Zhao R et al (2017) Functionalized magnetic iron oxide/polyacrylonitrile composite electrospun fibers as effective chromium (VI) adsorbents for water purification. J Colloid Interface Sci 505:1018–1030

    CAS  PubMed  Google Scholar 

  156. Tijing LD et al (2012) Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chem Eng J 197:41–48

    CAS  Google Scholar 

  157. Rajeswari A, Vismaiya S, Pius A (2017) Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem Eng J 313:928–937

    CAS  Google Scholar 

  158. Joo Kim H et al (2014) Fabrication of multifunctional TiO2–fly ash/polyurethane nanocomposite membrane via electrospinning. Ceram Int 40(2):3023–3029

    Google Scholar 

  159. Sundaran SP et al (2020) Polyurethane nanofibrous membranes decorated with reduced graphene oxide–TiO2 for photocatalytic templates in water purification. J Mater Sci 55(14):5892–5907

    CAS  Google Scholar 

  160. Pant HR et al (2014) One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification. J Hazard Mater 264:25–33

    CAS  PubMed  Google Scholar 

  161. Elakkiya SM et al Application Potentials and Challenges of Electrospinning

  162. Boricha AG, Murthy Z (2008) Preparation and performance of N, O-carboxymethyl chitosan-polyether sulfone composite nanofiltration membrane in the separation of nickel ions from aqueous solutions. J Appl Polym Sci 110(6):3596–3605

    CAS  Google Scholar 

  163. Sundaran SP et al (2019) Multifunctional graphene oxide loaded nanofibrous membrane for removal of dyes and coliform from water. J Environ Manage 240:494–503

    CAS  PubMed  Google Scholar 

  164. Nigiz F, Unlu D, Hilmioglu N (2017) Carbon black loaded composite poly (dimethyl siloxane) membrane preparation and application for hazardous chemical removal from water. Acta Phys Pol A 132(3):693–696

    CAS  Google Scholar 

  165. Huang J et al (2020) Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating. Desalination 489:114529

    CAS  Google Scholar 

  166. Sun J et al (2020) A low cost paper tissue-based PDMS/SiO2 composite for both high efficient oil absorption and water-in-oil emulsion separation. J Clean Prod 244:118814

    CAS  Google Scholar 

  167. Ren L-F et al (2020) High-performance electrospinning-phase inversion composite PDMS membrane for extractive membrane bioreactor: Fabrication, characterization, optimization and application. J Membr Sci 597:117624

    CAS  Google Scholar 

  168. Lalia BS et al (2013) Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. J Membr Sci 428:104–115

    CAS  Google Scholar 

  169. Yadav A et al (2021) Novel MIL101 (Fe) impregnated poly (vinylidene fluoride-co-hexafluoropropylene) mixed matrix membranes for dye removal from textile industry wastewater. J Water Process Eng 43:102317

    Google Scholar 

  170. Yadav A et al (2021) Novel MIL101(Fe) impregnated poly(vinylidene fluoride-co-hexafluoropropylene) mixed matrix membranes for dye removal from textile industry wastewater. J Water Process Eng 43:102317

    Google Scholar 

  171. Baji A et al (2021) Durable Antibacterial and Antifungal Hierarchical Silver-Embedded Poly (vinylidene fluoride-co-hexafluoropropylene) Fabricated Using Electrospinning. ACS Appl Polym Mater 3(8):4256–4263

    CAS  Google Scholar 

  172. Pan J et al. (2021) Poly(vinylidene fluoride-co-hexafluoro propylene) membranes prepared via thermally induced phase separation and application in direct contact membrane distillation. Front Chem Sci Eng

  173. Bahrami S et al (2020) PVDF-HFP based polymer inclusion membranes containing Cyphos® IL 101 and Aliquat® 336 for the removal of Cr(VI) from sulfate solutions. Sep Purif Technol 250:117251

    CAS  Google Scholar 

  174. Al-Hobaib A, AL-Sheetan KM, El Mir L (2016) Effect of iron oxide nanoparticles on the performance of polyamide membrane for ground water purification. Mater Sci Semiconductor Process, 42:107–110

  175. Lakhotia SR, Mukhopadhyay M, Kumari P (2019) Iron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (NF) membrane for water treatment. Sep Purif Technol 211:98–107

    CAS  Google Scholar 

  176. Sun X et al (2015) Polyethylenimine-functionalized poly(vinyl alcohol) magnetic microspheres as a novel adsorbent for rapid removal of Cr(VI) from aqueous solution. Chem Eng J 262:101–108

    CAS  Google Scholar 

  177. Savva I et al (2015) Evaluation of electrospun polymer–Fe3O4 nanocomposite mats in malachite green adsorption. RSC Adv 5(21):16484–16496

    CAS  Google Scholar 

  178. Gholami A et al (2014) Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. J Ind Eng Chem 20(4):1517–1522

    CAS  Google Scholar 

  179. Chan KH et al (2015) Modification of PES membrane by PEG-coated cobalt doped iron oxide for improved Cu(II) removal. J Ind Eng Chem 27:283–290

    CAS  Google Scholar 

  180. Chai PV et al (2020) Iron oxide decorated graphene oxide embedded polysulfone mixed-matrix membrane: Comparison of different types mixed-matrix membranes on antifouling and performance. IOP Conf Series Earth Environ Sci 463:012174

    Google Scholar 

  181. Mirzaei M et al (2021) Fabrication of magnetic field induced mixed matrix membranes containing GO/Fe3O4 nanohybrids with enhanced antifouling properties for wastewater treatment applications. J Environ Chem Eng 9(4):105675

    CAS  Google Scholar 

  182. Mohiuddin M, Kumar B, Haque S (2017) Biopolymer composites in photovoltaics and photodetectors. Biopolymer Composites in Electronics. Elsevier, Hoboken, pp 459–486

    Google Scholar 

  183. Rani M et al (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6(9):2371–2385

    Google Scholar 

  184. Badawy ME, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydrate Chem, 2011

  185. Geetika G et al  (2022) Environment-friendly and biodegradable a-Fe2O3/C20H38O11 nanocomposite growth to lengthen the Solanum lycopersicum storage process. Adv Nat Sci: Nanosci Nanotechnol 13(2):025004

    Google Scholar 

  186. Bhuiyan D et al (2015) Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles. Acta Biomater 15:181–190

    CAS  PubMed  Google Scholar 

  187. Kumar s et al (2022) Influence of Ga2O3 on structural and morphological properties of lead-free BCT at low temperature. AIP Conf Proc 2357(1):050003

    CAS  Google Scholar 

  188. Falca G et al (2019) Cellulose hollow fibers for organic resistant nanofiltration. J Membr Sci 586:151–161

    CAS  Google Scholar 

  189. Shandilya M, Thakur S, Thakur S (2020) Magnetic amendment in the fabrication of environment friendly and biodegradable iron oxide/ethyl cellulose nanocomposite membrane via electrospinning. Cellulose 27(17):10007–10017

    CAS  Google Scholar 

  190. Lal M. et al (2017) Smart material nanofibers for day to day life. Smart materials for smart living p 1–66

  191. Bolisetty S, Mezzenga R (2016) Amyloid–carbon hybrid membranes for universal water purification. Nat Nanotechnol 11(4):365

    CAS  PubMed  Google Scholar 

  192. Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16(8):600–607

    CAS  Google Scholar 

  193. Anirudhan T, Jalajamony S (2013) Ethyl thiosemicarbazide intercalated organophilic calcined hydrotalcite as a potential sorbent for the removal of uranium (VI) and thorium (IV) ions from aqueous solutions. J Environ Sci 25(4):717–725

    CAS  Google Scholar 

  194. Zhu H et al (2011) Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohyd Polym 86(4):1558–1564

    CAS  Google Scholar 

  195. Vakili M et al (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohyd Polym 113:115–130

    CAS  Google Scholar 

  196. Cheung RCF et al (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13(8):5156–5186

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Fadaie M et al (2019) Stabilization of chitosan based electrospun nanofibers through a simple and safe method. Mater Sci Eng, C 98:369–380

    CAS  Google Scholar 

  198. Sureshkumar V et al (2016) Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Appl Nanosci 6(2):277–285

    CAS  Google Scholar 

  199. Kumar S et al. Optical induction in K0.5Na0.5NbO3 ferroelectric ceramic at low calcination temperature by sol-gel route. Ferroelectr lett sect 48(4–6):128–142

    CAS  Google Scholar 

  200. Jana S et al (2011) Chitosan based ceramic ultrafiltration membrane: preparation, characterization and application to remove Hg (II) and As (III) using polymer enhanced ultrafiltration. Chem Eng J 170(1):209–219

    CAS  Google Scholar 

  201. Croitoru A-M et al (2020) Chitosan/Graphene oxide nanocomposite membranes as adsorbents with applications in water purification. Materials 13(7):1687

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Pal K, Banthia A, Majumdar D (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62(2):215–218

    CAS  Google Scholar 

  203. Torres FG, Commeaux S, Troncoso OP (2013) Starch-based biomaterials for wound-dressing applications. Starch-Stärke 65(7–8):543–551

    CAS  Google Scholar 

  204. Kaur G et al (2022) Effect of addition of Ga2O3 on structural and morphological properties of Ba0.85Ca0.15Zr0.10Ti0.90O3 by sol-hydrothermal method. AIP Conference Proceedings, 2357:050001

  205. Thakur S et al. (2017) Biosynthesis of nanoparticles using plant extracts. Nova Publisher 3(6):366–375

    Google Scholar 

  206. Pokhrel S (2015) A review on introduction and applications of starch and its biodegradable polymers. Int J Environ 4(4):114–125

    Google Scholar 

  207. Moradi E et al (2019) The efficient removal of methylene blue from water samples using three-dimensional poly (vinyl alcohol)/starch nanofiber membrane as a green nanosorbent. Environ Sci Pollut Res 26(34):35071–35081

    CAS  Google Scholar 

  208. Radoor S et al (2020) Adsorption study of anionic dye, Eriochrome black T from aqueous medium using polyvinyl alcohol/starch/ZSM-5 zeolite membrane. J Polym Environ 28(10):2631–2643

    CAS  Google Scholar 

  209. Ambre JP et al (2019) High flux hyperbranched starch-graphene oxide piperazinamide composite nanofiltration membrane. J Environ Chem Eng 7(6):103300

    CAS  Google Scholar 

  210. He X et al (2016) Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane. Int J Biol Macromol 82:174–181

    CAS  PubMed  Google Scholar 

  211. Padil VV et al (2018) Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv 36(7):1984–2016

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Sharma G et al (2018) Guar gum and its composites as potential materials for diverse applications: a review. Carbohyd Polym 199:534–545

    CAS  Google Scholar 

  213. Thombare N et al (2016) Guar gum as a promising starting material for diverse applications: a review. Int J Biol Macromol 88:361–372

    CAS  PubMed  Google Scholar 

  214. Manawi Y et al (2018) Enhancing lead removal from water by complex-assisted filtration with acacia gum. Chem Eng J 352:828–836

    CAS  Google Scholar 

  215. Mofradi M et al (2020) Processing Guar Gum into polyester fabric based promising mixed matrix membrane for water treatment. Carbohydrate Polymers, 116806

  216. Iqbal DN et al (2020) Synthesis and characterization of chitosan and guar gum based ternary blends with polyvinyl alcohol. Int J Biol Macromol 143:546–554

    CAS  PubMed  Google Scholar 

  217. Manawi Y et al (2017) Arabic gum as a novel pore-forming and hydrophilic agent in polysulfone membranes. J Membr Sci 529:95–104

    CAS  Google Scholar 

  218. Singh N, Balasubramanian K (2014) An effective technique for removal and recovery of uranium (VI) from aqueous solution using cellulose–camphor soot nanofibers. RSC Adv 4(53):27691–27701

    Google Scholar 

  219. Taha AA et al (2012) Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr (VI) ion removal from aqueous solution. J Environ Manage 112:10–16

    CAS  PubMed  Google Scholar 

  220. San NO et al (2014) Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Adv 4(61):32249–32255

    CAS  Google Scholar 

  221. Sarioglu OF et al (2013) Efficient ammonium removal from aquatic environments by Acinetobacter calcoaceticus STB1 immobilized on an electrospun cellulose acetate nanofibrous web. Green Chem 15(9):2566–2572

    CAS  Google Scholar 

  222. Ramadoss P et al (2020) Low-cost and biodegradable cellulose/PVP/activated carbon composite membrane for brackish water treatment. J Appl Polym Sci 137(22):48746

    CAS  Google Scholar 

  223. Zha X-J et al (2019) Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl Mater Interfaces 11(40):36589–36597

    CAS  PubMed  Google Scholar 

  224. Yu K et al (2013) Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications. Colloids Surf, A 425:31–41

    CAS  Google Scholar 

  225. Horzum N et al (2013) Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Adv 3(21):7828–7837

    CAS  Google Scholar 

  226. Aliabadi M et al (2014) Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J Taiwan Inst Chem Eng 45(2):518–526

    CAS  Google Scholar 

  227. Ma C et al (2016) Enhancing integrated removal of Microcystis aeruginosa and adsorption of microcystins using chitosan-aluminum chloride combined coagulants: effect of chemical dosing orders and coagulation mechanisms. Colloids Surf, A 490:258–267

    CAS  Google Scholar 

  228. Garcia Peña LV et al (2017) Hybrid chitosan–silver nanoparticles enzymatically embedded on cork filter material for water disinfection. Ind Eng Chem Res 56(13):3599–3606

    Google Scholar 

  229. Wang D et al (2021) A chitosan/dopamine-TiO2 composite nanofiltration membrane for antifouling in water purification. Cellulose 28(8):4959–4973

    CAS  Google Scholar 

  230. Shandilya, M. et al (2021) Heavy metal recovery from wastewater by using iron-based nanomaterials. Nova Science Publishers 319–339

  231. Saberi A, Sadeghi M, Alipour E (2020) Design of AgNPs -Base Starch/PEG-Poly (Acrylic Acid) Hydrogel for Removal of Mercury (II). J Polym Environ 28(3):906–917

    CAS  Google Scholar 

  232. Rajab Beigy M et al (2018) High nitrate removal by starch-stabilized Fe0 nanoparticles in aqueous solution in a controlled system. Eng Life Sci 18(3):187–195

    CAS  PubMed  Google Scholar 

  233. Malekzadeh M et al (2018) The use of starch-modified magnetic Fe0 nanoparticles for naphthalene adsorption from water samples: Adsorption isotherm, kinetic and thermodynamic studies. Appl Organomet Chem 32(8):e4434

    Google Scholar 

  234. Stan M et al (2019) Starch-coated green synthesized magnetite nanoparticles for removal of textile dye Optilan Blue from aqueous media. J Taiwan Inst Chem Eng 100:65–73

    CAS  Google Scholar 

  235. Mofradi M et al (2021) Processing Guar Gum into polyester fabric based promising mixed matrix membrane for water treatment. Carbohyd Polym 254:116806

    CAS  Google Scholar 

  236. Foong YX, Yew LH, Chai PV (2021) Green approaches to polysulfone based membrane preparation via dimethyl sulfoxide and eco-friendly natural additive gum Arabic. Mater Today Proc 46:2092–2097

    CAS  Google Scholar 

  237. Khan TA et al (2017) Removal of Chromium(VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arab J Chem 10:S2388–S2398

    CAS  Google Scholar 

  238. Pal A, Giri A, Bandyopadhyay A (2016) Influence of hydrodynamic size and zeta potential of a novel polyelectrolyte poly (acrylic acid) grafted guar gum for adsorption of Pb (II) from acidic waste water. J Environ Chem Eng 4(2):1731–1742

    CAS  Google Scholar 

  239. Mittal H, Mishra SB (2014) Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohyd Polym 101:1255–1264

    CAS  Google Scholar 

  240. Yagoub H et al (2019) Complex membrane of cellulose and chitin nanocrystals with cationic guar gum for oil/water separation. J Appl Polym Sci 136(37):47947

    Google Scholar 

  241. Manawi Y et al (2017) Characterization and Separation Performance of a Novel Polyethersulfone Membrane Blended with Acacia Gum. Sci Rep 7(1):1–12

    CAS  Google Scholar 

  242. Najjar A et al (2019) Antibiofouling performance by polyethersulfone membranes cast with oxidized multiwalled carbon nanotubes and arabic gum. Membranes 9(2):32

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Shoolini University of Biotechnology and Management Sciences, India and HP council of Science, Technology and Environment (HIMCOSTE), STC/F(8)-2(R&D-20-21)-129, to provide the necessary facilities and support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Shandilya.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Shandilya, M., Uniyal, P. et al. Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym. Bull. 80, 7145–7200 (2023). https://doi.org/10.1007/s00289-022-04417-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04417-6

Keywords

Navigation