Skip to main content

Electrospun Nanofiber Membranes and Their Applications in Water and Wastewater Treatment

  • Chapter
  • First Online:
Nanotechnology for Water Treatment and Purification

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 22))

Abstract

Electrospun nanofiber membranes (ENMs) are cutting edge new generation of membranes that offer significantly higher flux at similar rejection rate compared with the conventional membranes. Electrospinning has allowed for fabrication of highly porous ENMs with controllable pore size in the range of microfiltration and ultrafiltration. ENMs could replace conventional water treatment membranes with smaller systems that operate at lower pressures. In this chapter, the fundamentals of ENMs are presented and characterization methods, properties, and applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.S. Barhate, S. Ramakrishna, Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J. Mem. Sci. 296, 1–8 (2007)

    Article  Google Scholar 

  2. V. Thavasi, G. Singh, S. Ramakrishna, Electrospun nanofibers in energy and environmental applications. Energy Env. Sci. 1, 205–221 (2008)

    Article  Google Scholar 

  3. R. Balamurugan, S. Sundarrajan, S. Ramakrishna, Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 1, 232–248 (2011)

    Article  Google Scholar 

  4. C. Burger, B.S. Hsiao, B. Chu, Nanofibrous materials and their applications. Annu. Rev. Mater. Res. 36, 333–368 (2006)

    Article  Google Scholar 

  5. T. Matsuura, C. Feng, K.C. Khulbe, D. Rana, G. Singh, R. Gopal, S. Kaur, R.S. Barhate, S. Ramakrishna, S. Tabe, Development of novel membranes based on electrospun nanofibers and their application in liquid filtration, membrane distillation, and membrane adsorption. Maku (Japanese J. Membr.) 35(3), 119–127 (2010)

    Google Scholar 

  6. M. Botes, T.E. Cloete, The potential of nanofibers and nanobiocides in water purification. Crit. Rev. Microbiol. 36(1), 68–81 (2010)

    Article  Google Scholar 

  7. X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)

    Article  Google Scholar 

  8. V.M. Cepak, J.C. Hulteen, G. Che, K.B. Jirage, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Chemical strategies for template syntheses of composite micro– and nanostructures. Chem. Mater. 9, 1065–1067 (1997)

    Article  Google Scholar 

  9. B.B. Lakshmi, P.K. Dorhout, C.R. Martin, Sol-Gel template synthesis of semiconductor nanostructures. Chem. Mater. 9, 857–862 (1997)

    Article  Google Scholar 

  10. M. Ikegame, K. Tajima, T. Aida, Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: Hexagonal versus lamellar for recombination of polarons into bipolarons. Angew. Che. Int. Ed. 42(19), 2154–2157 (2003)

    Article  Google Scholar 

  11. H. Li, Y. Ke, Y. Hu, Polymer nanofibers prepared by template melt extrusion. J. Appl. Polym. Sci. 99(3), 1018–1023 (2006)

    Article  Google Scholar 

  12. N.I. Kovtyukhova, B.R. Martin, J.K.N. Mbindyo, T.E. Mallouk, M. Cabassi, T.S. Mayer, Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices. Mater. Sci. Eng. C 19, 255–262 (2002)

    Article  Google Scholar 

  13. Z. Yang, B. Xu, Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J. Mater. Chem. 17(23), 2385–2393 (2007)

    Article  Google Scholar 

  14. J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrostat 35, 151–160 (1995)

    Article  Google Scholar 

  15. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review of polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci. Technol. 63, 2223–2253 (2003)

    Article  Google Scholar 

  16. D. Li, Y.N. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004)

    Article  Google Scholar 

  17. P. Raghavan, D.H. Lim, J.H. Ahn, C. Nah, D.C. Sherrington, H.S. Ryu, H.J. Ahn, Electrospun polymer nanofibers: The booming cutting edge technology. React. Funct. Polym. 72, 915–930 (2012)

    Article  Google Scholar 

  18. C. Feng, K.C. Khulbe, T. Matsuura, S. Tabe, A.F. Ismail, Preparation and characterization of electrospun nanofiber membranes and their possible applications in water treatment. J. Sep. Purif. 102, 118–135 (2013)

    Article  Google Scholar 

  19. S.A. Theron, E. Zussman, A.L. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45(6), 2017–2030 (2004)

    Article  Google Scholar 

  20. R. Rangkupan, D.H. Reneker, Electrospinning process of molten polypropylene in vacuum. J. Met. Mater. Miner. Soc 12, 81–87 (2003)

    Google Scholar 

  21. J. Zeleny, The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys. Rev. 3, 69–91 (1914)

    Article  Google Scholar 

  22. J.U. Kim, S.H. Park, H.J. Choi, W.K. Lee, J.K. Lee, M.R. Kim, Effect of electrolyte in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers on dye-sensitized solar cells. Sol. Energ. Mater. Sol. Cells. 93(6–7), 803–807 (2009)

    Article  Google Scholar 

  23. S.K. Kim, J.H. Ryu, H.D. Kwen, C.H. Chang, S.H. Cho, convenient preparation of ion-exchange PVDF membranes by a radiation-induced graft polymerization for a battery separator. Polymer (Korea) 34(2), 126–132 (2010)

    Google Scholar 

  24. C. Feng, K.C. Khulbe, S. Tabe, Volatile organic compound removal by membrane gas stripping using electrospun nanofiber membrane. Desalination 287, 98–102 (2012)

    Article  Google Scholar 

  25. K. Yoon, K. Kim, X. Wang, D. Fang, B.S. Hsiao, B. Chu, High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47, 2434–2441 (2006)

    Article  Google Scholar 

  26. K. Yoon, B.S. Hsiao, B. Chu, High flux nanofiltration membranes based on internfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds. J. Membr. Sci 326, 484–492 (2009)

    Article  Google Scholar 

  27. G. Singh, D. Rana, T. Matsuura, S. Ramakrishna, R.M. Narbaitz, S. Tabe, Removal of disinfection byproducts from water by carbonized electrospun nanofibrous membranes. Sep. Purif. Technol. 74, 202–212 (2010)

    Article  Google Scholar 

  28. X. Wang, K. Zhang, Y. Yang, L. Wang, Z. Zhou, M. Zhu, B.S. Hsiao, B. Chu, Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane in a facile route. J. Membr. Sci. 356, 110–116 (2010)

    Article  Google Scholar 

  29. S. Kaur, R. Barhate, S. Sundarrajan, T. Matsuura, S. Ramakrishna, Hot pressing of electrospun membrane and its influence on separation performance on thin film composite nanofiltrtion membrane. Desalination 279, 201–209 (2011)

    Article  Google Scholar 

  30. A. Sato, R. Wang, H. Ma, B.S. Hsiao, B. Chu, Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. J. Electron. Microsc. 60(3), 201–209 (2011)

    Article  Google Scholar 

  31. Z. Ma, M. Kotaki, S. Ramakrishna, Electrospun cellulose nanofiber as affinity membrane. J. Membr. Sci. 265(1–2), 115–123 (2005)

    Article  Google Scholar 

  32. T. Christoforou, C. Doumanidis, Biodegradable cellulose acetate nanofiber fabrication via electrospinning. J. Nanosci. Nanotechnol. 10(9), 6226–6233 (2010)

    Article  Google Scholar 

  33. Y. Tian, M. Wu, R. Liu, Y. Li, D. Wang, J. Tan, R. Wu, Y. Huang, Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohyd. Polym. 83, 743–748 (2011)

    Article  Google Scholar 

  34. M. Aliabadi, M, M. Irani, J. Ismaeili, H. Piri, M.J. Parnian, Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. J. Chem. Eng. 220, 237–243 (2013)

    Article  Google Scholar 

  35. S. Putthanarat, P. Tapadia, S. Zarkoob, L.D. Miller, R.K. Eby, W.W. Adams, The color of dragline silk produced in captivity by the spider Nephila clavipes. Polymer 45(6), 1933–1937 (2004)

    Article  Google Scholar 

  36. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, F. Ko, Regeneration of Pombyxmori silk by electrospinning-Part 2: Process optimization and empirical modeling using response surface methodology. Polymer 45(11), 3701–3708 (2004)

    Article  Google Scholar 

  37. S. Zarkoob, R.K. Eby, D.H. Reneker, S.D. Hudson, D. Ertleya, W.W. Adams, Structure and morphology of electrospun silk nanofibers. Polymer 45, 3973–3977 (2004)

    Article  Google Scholar 

  38. B.M. Min, S.W. Lee, J.N. Lim, Y. You, T.S. Lee, P.H. Kang, W.H. Park, Chitin and chitosan nanofibers: Electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45(21), 7137–7142 (2004)

    Article  Google Scholar 

  39. T.J. Sill, H.A. von Recum, Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008)

    Article  Google Scholar 

  40. S. Megelski, J.S. Stephens, D. Bruce Chase, J.F. Rabolt, Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22), 8456–8466 (2002)

    Article  Google Scholar 

  41. S. Koombhongse, W. Liu, D.H. Reneker, Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci. B Polym. Phys 39(21), 2598–2606 (2001)

    Article  Google Scholar 

  42. A. Buer, S.C. Ugbolue, S.B. Warner, Electrospinning and properties of some nanofibers. J. Textile Res. 71(4), 323–328 (2001)

    Article  Google Scholar 

  43. A.G. MacDiarmid, W.E. Jones Jr., I.D. Norris, J. Gao, A.T. Johnson Jr., N.J. Pinto, J. Hone, B. Han, F.K. Ko, H. Okuzaki, M. Llaguno, Electrostatically-generated nanofibers of electronic polymers. Synth. Met. 119(1–3), 27–30 (2001)

    Article  Google Scholar 

  44. H. Savoji, D. Rana, T. Matsuura, S. Tabe, C. Feng, Development of plasma and/or chemically induced graft co-polymerized electrospun poly(vinylidene fluoride) membranes for Solute Separation. Sep. Purif. Technol. 108, 196–204 (2013)

    Article  Google Scholar 

  45. W. Sambaer, M. Zatloukala, D. Kimmer, The use of novel digital image analysis technique and rheological tools to characterize nanofiber nonwovens. Polym.Test. 29(1), 82–94 (2010)

    Article  Google Scholar 

  46. W. Sambaer, M. Zatloukal, D. Kimmer, Advanced characterization of nanofiber based nonwovens. Proceedings, 68th Annu. Tech. Conf. of the Society of Plastics Engs., ANTEC 2010 Orlando, FL, United States V1:779–783 (2010)

    Google Scholar 

  47. S. Manickam, J.R. McCutcheon, Characterization of polymeric nonwovens using porosimetry, porometry and X-ray computed tomography. J. Membr. Sci. 407–408, 108–115 (2012)

    Article  Google Scholar 

  48. A. Jena, K. Gupta, Pore structure characterization techniques. Am. Ceram. Soc. Bull. 84(3), 28–30 (2005)

    Google Scholar 

  49. M.M. Tomadakis, S.V. Sotirchosm, Transport properties of random arrays of freely overlapping cylinders with various orientation distributions. J. Chem. Phys. 98, 616–626 (1993)

    Article  Google Scholar 

  50. L. Huang, R.A. McMillan, R.P. Apkarian, B. Pourdeyhimi, V.P. Conticello, E.L. Chaikof, Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Macromolecules 33(8), 2989–2997 (2000)

    Article  Google Scholar 

  51. M. Kiristia, A.U. Oksuz, L. Oksuz, S. Ulusoy, Electrospun chitosan/PEDOT nanofibers. Mater. Sci. Eng. C Mater. Biol. Appl. 33(7), 3845–3850 (2013)

    Google Scholar 

  52. F. Kayaci, Z. Aytac, T. Uyar, Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution. J. Hazard Mater. 261, 286–294 (2013)

    Article  Google Scholar 

  53. Y.J. Kim, C.H. Ahn, M.O. Choi, Effect of thermal treatment on the characteristics of electrospun PVDF-silica composite nanofibrous membrane. J. Eur. Polym. 46, 1957–1965 (2010)

    Article  Google Scholar 

  54. H.T. Dang, R.M. Narbaitz, T. Matsuura, Evaluation of apparatus for membrane cleaning tests. J. Env. Eng. 136(10), 1161–1170 (2010)

    Article  Google Scholar 

  55. M. Nyström, M. Lindstrom, E. Matthiasson, Streaming potential as a tool in the characterization of ultrafiltration membranes. Colloids Surf. 36(3), 297–312 (1989)

    Article  Google Scholar 

  56. K. Kosmider, J. Scott, Polymeric nanofibres exhibit an enhanced air filtration performance. Filt. Sep. 39(6), 20–22 (2002)

    Article  Google Scholar 

  57. T. Grafe, M. Gogins, M. Barris, J. Schafer, R. Canepa, Nanofibers in filtration applications in transportation. Proceedings, Filtration 2001 Int Conf. and Expo of the Assoc. Nonwovens Fabric Industry, Chicago, Illinois, December 3–5 (2001)

    Google Scholar 

  58. A. Podgórski, A. Bałazy, L. Gradón, Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci. 61(20), 6804–6815 (2006)

    Article  Google Scholar 

  59. P.P. Tsai, H. Schreuder-Gibson, P. Gibson, Different electrostatic methods for making electret filters. J. Electrostat 54, 333–341 (2002)

    Article  Google Scholar 

  60. F.J. Liu, L.M. Huang, T.C. Wen, A. Gopalan, Large-area network of polyaniline nanowires supported platinum nanocatalysts for methanol oxidation. Synth. Met. 157(16–17), 651–658 (2007)

    Article  Google Scholar 

  61. E.S. Steigerwalt, G.A. Deluga, C.M. Lukehart, Rapid preparation of Pt-Ru/graphitic carbon nanofiber nanocomposites as DMFC anode catalysts using microwave processing. J. Nanosci. Nanotechnol. 3(3), 247–251 (2003)

    Article  Google Scholar 

  62. W. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60(4), 613–621 (2002)

    Article  Google Scholar 

  63. X. Mo, D. Li, H.A. EI-Hamshary, S.S. Al-Deyab, Electrospun nanofibers for tissue engineering. J. Fiber Bioeng. Informatics 6(3), 225–235 (2013)

    Article  Google Scholar 

  64. H. Jia, G. Zhu, B. Vugrinovich, W. Kataphinan, D.H. Reneker, P. Wang, Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol. Prog. 18(5), 1027–1032 (2002)

    Article  Google Scholar 

  65. Y.F. Fang, X.J. Huang, P.C. Chen, Z.K. Xu, Polymer materials for enzyme immobilization and their application in bioreactors. BMB Rep. 44(2), 87–95 (2011)

    Article  Google Scholar 

  66. R. Gopal, S. Kaur, C. Feng, C. Chand, S. Ramakrishna, S. Tabe, T. Matsuura, Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal. J. Membr. Sci. 289, 210–219 (2007)

    Article  Google Scholar 

  67. Z. Xu, Q. Gu, H. Hu, F. Li, A novel electrospun polysulfone fiber membrane: Application to advanced treatment of secondary bio-treatment sewage. Environ. Sci. Technol. 29, 13–21 (2008)

    Article  Google Scholar 

  68. I.M. El-Azizi, A. Schmalenberger, R. Komlenic, R.G.J. Edyvean, Study of a depth filter (Disruptor™) for the novel application of reducing SWRO membrane fouling. Desal. Water Treat. 29(1–3), 20–28 (2011)

    Article  Google Scholar 

  69. R. Komlenic, T. Berman, J.A. Brant, B. Dorr, I. El-Azizi, H. Mowers Removal, of polysaccharide foulants from reverse osmosis feedwater using electroadsorptive cartridge filters. Desal. Water Treat. 51, 1050–1056 (2013)

    Article  Google Scholar 

  70. R.J. Petersen, Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 83(1), 81–150 (1993)

    Article  Google Scholar 

  71. X. Wang, X. Chen, K. Yoon, D. Fang, B.S. Hsiao, B. Chu, High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. J. Env. Sci. Technol. 39, 7684–7691 (2005)

    Article  Google Scholar 

  72. X. Wang, D. Fang, K. Yoon, B.S. Hsiao, B. Chu, High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold. J. Membr. Sci. 278, 261–268 (2006)

    Article  Google Scholar 

  73. B. Chu, B.S. Hsiao, The role of polymers in breakthrough technologies for water purification. J. Polym. Sci. B Polym. Phys. 47, 2431–2435 (2009)

    Article  Google Scholar 

  74. D.A. Musale, A. Kumar, G. Pleizier, Formation and characterization of poly(acrylonitrile)/Chitosan composite ultrafiltration membranes. J. Membr. Sci. 154(2), 163–173 (1999)

    Article  Google Scholar 

  75. D.A. Musale, A. Kumar, Solvent and pH resistance of surface crosslinked chitosan/poly (acrylonitrile) composite nanofiltration membranes. J. Appl. Polym. Sci. 77, 1782–1793 (2000)

    Article  Google Scholar 

  76. M.V. Chandorilar, P.C. Bhavsar, Evaluation of polyacrylonitrate and poly (methyl methacrylate) as membrane materials for reverse osmosis. Indian J. Technol. 2, 124–132 (1983)

    Google Scholar 

  77. D.A. Musale, A. Kumar, Effects of surface crosslinking on sieving characteristics of chitosan/poly (acrylonitrile) composite nanofiltration membranes. Sep. Purif. Technol. 21(1–2), 27–37 (2000)

    Article  Google Scholar 

  78. N.-N. Bui, M.L. Lind, E.M.V. Hoek, J.R. McCutcheon, Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 385–386, 10–19 (2011)

    Article  Google Scholar 

  79. H. You, X. Li, Y. Yang, B. Wang, Z. Li, X. Wang, M. Zhu, B.S. Hsiao, High flux low pressure thin film nanocomposite ultrafiltration membranes based on nanofibrous substrates. Sep. Purif. Technol. 108, 143–151 (2013)

    Article  Google Scholar 

  80. B. Pan, B.S. Xing, Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42(24), 9005–9013 (2008)

    Article  Google Scholar 

  81. K. Yang, B.S. Xing, Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem. Rev. 110(10), 5989–6008 (2010)

    Article  Google Scholar 

  82. G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Purif. Technol. 58(1), 224–231 (2007)

    Article  Google Scholar 

  83. H.W. Liang, X. Cao, W.J. Zhang, H.T. Lin, F. Zhou, L.F. Chen, S.H. Yu, Robust and highly efficient free-standing carbonaceous nanofiber membranes for Water purification. Adv. Func. Mat. 21, 3851–3858 (2011)

    Article  Google Scholar 

  84. K.W. Lawson, D.R. Lloyd, Membr. Distil. J. Membr. Sci. 124, 1–25 (1997)

    Article  Google Scholar 

  85. J.A. Prince, G. Singh, D. Rana, T. Matsuura, V. Anbharasi, T.S. Shanmugasundaram, Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) - Clay nanocomposite nanofiber membranes (PVDF-clay NNMs) for desalination using direct contact membrane distillation. J. Membr. Sci. 397–398, 80–86 (2012)

    Article  Google Scholar 

  86. M. Khayet, Membrane and theoretical modeling of membrane distillation: A review. Adv. Coll. Interface Sci. 164, 56–88 (2011)

    Article  Google Scholar 

  87. M. Khayet, T. Matsuura, Application of surface modifying macromolecules for the preparation of membranes for membrane distillation. Desalination 158, 51–56 (2003)

    Article  Google Scholar 

  88. M. Nasir, H. Matsumoto, T. Danno, M. Minagawa, T. Irisawa, M. Shioya, M. Tanioka, Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. J. Polym. Sci. B Polym. Phys. 44, 779–786 (2006)

    Article  Google Scholar 

  89. C. Feng, K.C. Khulbe, T. Matsuura, R. Gopal, S. Kaur, S. Ramakrishna, M. Khayet, Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. J. Membr. Sci. 311, 1–6 (2008)

    Article  Google Scholar 

  90. Y. Liao, R. Wang, M. Tian, C. Qiu, A.G. Fane, Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 425–426, 30–39 (2013)

    Article  Google Scholar 

  91. Y. Liao, R. Wang, A.G. Fane, Engineering superhydrophobic surface on poly (vinylidene fluoride) nanofiber Membranes for direct contact membrane distillation. J. Membr. Sci. 440, 77–87 (2013)

    Article  Google Scholar 

  92. M. Essalhi, M. Khayet, Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation. J. Membr. Sci. 433, 167–179 (2013)

    Article  Google Scholar 

  93. J.A. Prince, V. Anbharasi, T.S. Shanmugasundaram, G. Singh, Preparation and characterization of novel triple layer hydrophilic-hydrophobic composite membrane for desalination using air gap membrane distillation. Sep. Purif. Technol. 118, 598–603 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Tabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tabe, S. (2014). Electrospun Nanofiber Membranes and Their Applications in Water and Wastewater Treatment. In: Hu, A., Apblett, A. (eds) Nanotechnology for Water Treatment and Purification. Lecture Notes in Nanoscale Science and Technology, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-06578-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06578-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06577-9

  • Online ISBN: 978-3-319-06578-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics