Skip to main content
Log in

Synthesis, structures, luminescent and color properties of polyethylmethacrylate (PEMA) polymers doped with rare earths

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Solid-state bulk polymer hosts doped with rare earths are expected to play a central role in the development of future light-emitting diodes and photonic devices due to the superior properties of polymers. In this study, linear polyethylmethacrylate (PEMA) and crosslinked PEMA gels doped with CdNb2O6: Er3+/Yb3+ nanocrystal powders were synthesized by free-radical crosslinking copolymerization. Er3+/Yb3+ ion structures embedded in PEMA polymers were investigated by the X-ray diffraction technique. The average crystalline particle sizes were found using the Pielazsek particle distribution and the Scherrer equation. The particle sizes decreased from 60 to 17 nm for CdNb2O6: Er3+/Yb3+ powders when they were embedded in PEMA polymers. Transmission electron microscopy and scanning electron microscopy monitored the change in the morphology of polymer samples doped with CdNb2O6: Er3+/Yb3+ powders. The optical properties of polymer samples were investigated by measuring luminescence spectra at room temperature. The doped Er3+/Yb3+ ion excited with a 975 nm diode laser achieved the up-conversion (UC) emissions by involving two-photon absorptions in the visible region. The UC intensities and absorbed photon numbers were increased by increasing crosslinker content. The effects of change in the structure and morphology of the host polymer material on the color tuning, color coordinates and color quality parameters were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kuznetsov SV, Burikov SA, Fedyanina AA, Filippova EA, Proydakova VY, Voronov VV, Tabachkova NY, Fedorov PP, Dolenko TA (2022) Impact of sensitizer Yb and activator Tm on luminescence intensity of β-NaYF4:Yb/Tm3+ nanoluminophores. Nanosyst: Phys Chem Math 13:331–341. https://doi.org/10.17586/2220-8054-2022-13-3-331-341

  2. Baig N, Kammakakam I, Falath WW (2021) Nanomaterials: a review of synthesis methods. properties. recent progress and challenges. Mater Adv 2:1821–1871. https://doi.org/10.1039/D0MA00807A

    Article  Google Scholar 

  3. Neacsu IA, Stoica AE, Vasile BS, Andronescu E (2019) Luminescent hydroxyapatite doped with rare earth elements for biomedical applications. Nanomaterials 9:239–269. https://doi.org/10.3390/nano9020239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bian W, Zhou M, Chen G, Yu X, Pokhrel M, Mao Y, Luo H (2018) Upconversion luminescence of ytterbium and erbium co-doped gadolinium oxysulfate hollow nanoparticles. Appl Mater Today 1:381–386. https://doi.org/10.1016/j.apmt.2018.11.006

    Article  Google Scholar 

  5. Shkir M, Kaushik A, Alfaify S (2020) Nanomaterials for optoelectronic applications. Apple Academic Press Inc, Co-publisher with CRC Press Taylor & Francis Group

  6. Iman AR (2020) Advances in functional nanomaterials science. Ann Phys 532:2000015–2000038. https://doi.org/10.1002/andp.202000015

    Article  CAS  Google Scholar 

  7. Liu Q (2020) Studies of optical properties of lanthanide upconversion nanoparticles for emerging applications. Stockholm: KTH Royal Institute of Technology

  8. Wang J, Deng R, Macdonald MA, Chen B, Yuan J, Wang F, Chi D, Hor TSA, Zhang P, Liu G, Han Y, Liu X (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13:157–162. https://doi.org/10.1038/nmat3804

    Article  CAS  PubMed  Google Scholar 

  9. Bing C, Feng W (2020) Combating concentration quenching in upconversion nanoparticles. Acc Chem Res 53:358–367. https://doi.org/10.1021/acs.accounts.9b00453

    Article  CAS  Google Scholar 

  10. Hao D, Sun L, Yan C (2015) Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 44:1608–1634. https://doi.org/10.1039/C4CS00188E

    Article  Google Scholar 

  11. Quintanilla M, Ren F, Ma D, Vetrone F (2014) Light management in upconverting nanoparticles: ultrasmall core/shell architectures to tune the emission color. ACS Photonics 1:662–669. https://doi.org/10.1021/ph500208q

    Article  CAS  Google Scholar 

  12. Wei W, Zhang Y, Chen R, Goggi J, Huang RNL, Bhakoo KK, Sun H, Tan TTY (2014) Cross relaxation induced pure red upconversion in activator- and sensitizer-rich lanthanide nanoparticles. Chem Mater 26:5183–5186. https://doi.org/10.1021/cm5022382

    Article  CAS  Google Scholar 

  13. Sarmanova OE, Burikov SA, Laptinskiy KA, Kotova OD, Filippova EA, Dolenko TA (2020) In vitro temperature sensing with up-conversion NaYF4:Yb3+/Tm3+-based nanocomposites: Peculiarities and pitfalls. Spectrochim Acta Part A Mol Biomol Spectrosc 241:118627. https://doi.org/10.1016/j.saa.2020.118627

    Article  CAS  Google Scholar 

  14. Reig DS, Grauel B, Konyushkin VA, Nakladov AN, Fedorov PP, Busko D, Howard IA, Richards BS, Genger UR, Kuznetsov SV, Turshatov A, Würth C (2020) Upconversion properties of SrF2:Yb3+. Er3+ single crystals. J Mater Chem C 12:4093–4101. https://doi.org/10.1039/C9TC06591A

    Article  Google Scholar 

  15. Pominova DV, Proydakova VY, Romanishkin ID, Ryabova AV, Grachev PV, Makarov VI, Kuznetsov SV, Uvarov OV, Voronov VV, Yapryntsev AD, Ivanov VK, Loschenov VB (2020) Achieving high to NIR conversion efficiency by optimization of Tm3+ content in Na (Gd, Yb)F4: Tm upconversion luminophores. Laser Phys Lett 17:125701. https://doi.org/10.1088/1612-202X/abbede

    Article  CAS  Google Scholar 

  16. Pilch A, Wawrzyńczyk D, Kurnatowska M, Czaban B, Samoć M, Strek W, Bednarkiewicz A (2017) The concentration dependent up-conversion luminescence of Ho3+ and Yb3+ co-doped β-NaYF4. J Lumin 182:114–122. https://doi.org/10.1016/j.jlumin.2016.10.016

    Article  CAS  Google Scholar 

  17. Dekang X, Chufeng L, Jiawei Y, Shenghong Y, Yueli Z (2015) Understanding energy transfer mechanisms for tunable emission of Yb3+-Er3+ codoped GdF3 nanoparticles: Concentration-dependent luminescence by near-infrared and violet excitation. J Phys Chem C 119:6852–6860. https://doi.org/10.1021/acs.jpcc.5b00882

    Article  CAS  Google Scholar 

  18. Vetrone F, Boyer J, Capobianco JA (2004) Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. J Appl Phys 96:661. https://doi.org/10.1063/1.1739523

    Article  CAS  Google Scholar 

  19. Chenshuo M, Xiaoxue X, Fan W, Zhiguang Z, Deming L, Jiangbo Z, Ming G, Candace IL, Dayong J (2017) Optimal sensitizer concentration in single upconversion. Nanocrystals 17:2858–2864. https://doi.org/10.1021/acs.nanolett.6b05331

    Article  CAS  Google Scholar 

  20. Clark PCJ, Andresen E, Sear MJ, Favaro M, Girardi L, Resch-Genger RU, Starr DE (2022) Quantification of the activator and sensitizer ion distributions in NaYF4:Yb3+, Er3+ upconverting nanoparticles via depth-profiling with tender x-ray photoemission. Small 18:2107976. https://doi.org/10.1002/smll.202107976

    Article  CAS  Google Scholar 

  21. Pires AM, Heer S, Güdel HU, Serra OA (2006) Er, Yb doped yttrium based nanosized phosphors: particle size, “host lattice” and doping ion concentration effects on upconversion efficiency. J Flouresc 16:461–468. https://doi.org/10.1007/s10895-006-0085-9

    Article  CAS  Google Scholar 

  22. Tian Y, Tian B, Cui C, Huang P, Wang L, Chen B (2015) Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor. RSC Adv 5:14123–14128. https://doi.org/10.1039/C4RA13204A

    Article  CAS  Google Scholar 

  23. Dwivedi A, Kumar D, Rai SB, Rai AK (2020) Effect of host on the radiative (upconversion emission) as well as non-radiative relaxation (laser induced optical heating) in Tm3+/Yb3+ co-doped phosphors. J Lumin 226:117421. https://doi.org/10.1016/j.jlumin.2020.117421

    Article  CAS  Google Scholar 

  24. Cheremisinoff NP (2001) Condensed encyclopedia of polymer engineering terms. Butterworth-Heinemann, Elsevier,. https://doi.org/10.1016/B978-0-08-050282-3.50001-9

    Article  Google Scholar 

  25. Matyjaszewski K, Möller M (2012) Polymer science: a comprehensive reference. Elsevier. https://doi.org/10.1016/B978-0-444-53349-4.09000-2

    Article  Google Scholar 

  26. Zhang H, Wang X, Jin R, Su Q (2022) Preparation and applications of polymer-modified lanthanide-doped upconversion nanoparticles. Giant 12:100130–100143. https://doi.org/10.1016/j.giant.2022.100130

    Article  CAS  Google Scholar 

  27. Bennison MJ, Collins AR, Zhang B, Evans RC (2021) Organic polymer hosts for triplet-triplet annihilation upconversion systems. Macromolecules 54:5287–5303. https://doi.org/10.1021/acs.macromol.1c00133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buhari T, Aktaş DK, Erdem M, Eryürek G (2022) The effect of crosslinker contents on the up-conversion luminescence properties of CdNb2O6: Er3+ powders embedded in the polyethylmethacrylate (PEMA) networks. J Lumin 251:119189. https://doi.org/10.1016/j.jlumin.2022.119189

    Article  CAS  Google Scholar 

  29. Ghafouri SA, Erdem M, Ekmekçi MK, Mergen A, Özen G (2014) Concentration effect of Er3+ ions on structural and spectroscopic properties of CdNb2O6 phosphors. Mater Res Bull 60:562–565. https://doi.org/10.1016/j.materresbull.2014.08.061

    Article  CAS  Google Scholar 

  30. Pielaszek R (2004) FW15/45M method for determination of the grain size distribution from powder diffraction line profile. J Alloy Compd 382:128–132. https://doi.org/10.1016/j.jallcom.2004.05.040

    Article  CAS  Google Scholar 

  31. El Boukhari T, Kaygusuz H, Bilir G, Erim FB, Ozen G (2017) Microstructural and optical properties of SiO2 glasses doped with ZnSe quantum dots and Nd3+ ions. Physica B 509:41–45. https://doi.org/10.1016/j.physb.2016.11.026

    Article  CAS  Google Scholar 

  32. Shi L, Shen Q, Qiu Z (2014) Concentration-dependent upconversion emission in Er-doped and Er/Ybcodoped LiTaO3 polycrystals. J Lumin 148:94–97. https://doi.org/10.1016/j.jlumin.2013.12.001

    Article  CAS  Google Scholar 

  33. Magdalane CM, Kaviyarasu K, Raja A, Arularasu MV, Mola GT, Isaev AB, Al-Dhabi NA, Arasu MV, Jeyaraj B, Kennedy J, Maaza M (2018) Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: Investigation of cytotoxicity, antibacterial growth inhibition using catalyst. J Photochem Photobiol, B 185:275–282. https://doi.org/10.1016/j.jphotobiol.2018.06.011

    Article  CAS  Google Scholar 

  34. Elsaeedy HI, Ali HE, Algarni H, Yahia IS (2019) Nonlinear behavior of the current-voltage characteristics for erbium-doped PVA polymeric composite films. Appl Phys A 125:1432–1630. https://doi.org/10.1007/s00339-018-2375-x

    Article  CAS  Google Scholar 

  35. Li Q, Yan B (2019) Multi-component assembly of luminescent rare earth hybrid materials. J Rare Earths 37:113–123. https://doi.org/10.1016/j.jre.2018.10.001

    Article  CAS  Google Scholar 

  36. Zo B, Yan L, Huang J, Liu X, Tao L, Zhang Q (2020) NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice. Nat Photonics 14:760–766. https://doi.org/10.1038/s41566-020-00714-6

    Article  CAS  Google Scholar 

  37. Yan L, Zhou B, Song N, Liu X, Huang J, Wang T, Tao L, Zhang Q (2018) Self-sensitization induced upconversion of Er3+ in core–shell nanoparticles. Nanoscale 10:17949–17957. https://doi.org/10.1039/C8NR04816A

    Article  CAS  PubMed  Google Scholar 

  38. Bai X, Song H, Pan G, Lei Y, Wang T, Ren X, Lu S, Dong B, Dai Q, Fan L (2007) Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects. J Phys Chem C 111:1932–7447. https://doi.org/10.1021/jp070122e

    Article  CAS  Google Scholar 

  39. Huang C, Qian X, Yang R (2018) Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R Rep 132:1–22. https://doi.org/10.1016/j.mser.2018.06.002

    Article  Google Scholar 

  40. Bhemarajam J, Prasad PS, Babu MM, Prasad M (2021) Spectroscopic and optical investigations on Er3+/Yb3+co-doped bismuth–boroleadlithium glasses for solid state laser applications. Opt Mater 122:111657–111666. https://doi.org/10.1016/j.optmat.2021.111657

    Article  CAS  Google Scholar 

  41. Li X, Zhang P, Yin H, Zhu S, Li Z, Hang Y, Chen Z (2019) Sensitization and deactivation effects of Nd3+ on the Er3+: 2.7 μm emission in PbF2 crystal. Opt Mater Express 9:1698–1708. https://doi.org/10.1364/OME.9.001698

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Kaya Aktaş.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 207 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buhari, T., Aktaş, D.K., Erdem, M. et al. Synthesis, structures, luminescent and color properties of polyethylmethacrylate (PEMA) polymers doped with rare earths. J Polym Res 31, 6 (2024). https://doi.org/10.1007/s10965-023-03844-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03844-x

Keywords

Navigation