Skip to main content
Log in

Predicting the effect of coconut natural fibers for improving the performance of biocomposite materials based on the poly (methyl methacrylate)-PMMA polymer for engineering applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The choice of materials depends on the performance requirements of the system and many other factors including size, weight, mechanical load, environment, number of systems required, and cost. In this context, we have studied and investigated, using the genetic approach and the nonlinear acoustic technique, the effect of mechanical and thermal stresses on fiber–matrix interface damage of E-Glass/Poly (methyl methacrylate)-PMMA and Coconut/PMMA composite and biocomposite material, respectively. The results of the genetic modeling are in good agreement with the nonlinear acoustic technique results. We have found a difference in fiber–matrix interface damage between the two materials Coconut/PMMA and E-Glass/PMMA is in the order of 0.02–0.09. The results of statistical analysis based on the values ​​of the correlation coefficients, which are very nearly to 1 (0.9991 and 0.9938), have proved the convergence of genetic results. This finding confirms the conclusions found by several researchers where they have showed that coconut fibers are potential candidates for the reinforcement of civil engineering structures, in building materials and wireless communication devices due to their better physical and mechanical properties, and that coconut fiber can be a potential candidate to partially replace glass fiber in certain areas mentioned above and confirmed by very recent and interesting studies dated in 2020 and 2021.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Newswander T, Paquin RA (2017) Materials for optical systems from: handbook of optomechanical engineering. CRC Press, London. https://doi.org/10.4324/9781315153247-3

    Book  Google Scholar 

  2. Gagné V (2011) Utilisation des profiles en matériaux composites dans les lignes aériennes de transport dénergie électrique. Université de Sherbrooke, Sherbrooke

    Google Scholar 

  3. Li F, Lania K, Wang X, Xue G, Winter HH (2010) Steric effects on the rheology of nanocomposite gels of organoclay in dicarboxyl-terminated polybutadiene. Soft Matter 6:2442–2448

    Article  CAS  Google Scholar 

  4. Daniela SR, Paul B (2018) Correlation of rheological properties of ferrofluid-based magnetorheological fluids using the concentration-magnetization superposition. J Rheol 62:739

    Article  Google Scholar 

  5. Hsissou R, Benzidia B, Hajjaji N, Elharfi A (2018) Elaboration and electrochemical studies of the coating behavior of a new nanofunctional epoxy polymer on E24 steel in 3.5% NaCl. Port Electrochem Acta 36:259–270

    Article  CAS  Google Scholar 

  6. Winter HH (2009) Three views of viscoelasticity for Cox-Merz materials. Rheol Acta 48:241–243

    Article  CAS  Google Scholar 

  7. Hsissou R, Berradi M, El Bouchti M et al (2019) Synthesis characterization rheological and morphological study of a new epoxy resin pentaglycidyl ether pentaphenoxy of phosphorus and their composite (PGEPPP/MDA/PN). Polym Bull 76:4859–4878. https://doi.org/10.1007/s00289-018-2639-9

    Article  CAS  Google Scholar 

  8. Ayad AH, Faisal A, Dooraid NA, Mashallah R, Sivarajasekar N, Sharma G (2021) Cost-effective composite prepared from sewage sludge waste and cement kiln dust as permeable reactive barrier to remediate simulated groundwater polluted with tetracycline. J Environ Chem Eng 9:105194

    Article  Google Scholar 

  9. Hsissou R, El Rhayam Y, El Harfi A (2014) Synthesis and characterization of a new epoxy resin homologous to DGEBA (diglycidyl 3-Aminopropyl Triethyl Silane): a study of thermal properties. Int J Innov Appl Stud 7:674–682

    Google Scholar 

  10. Gohardani O, Williamson DM, Hammond DW (2012) Multiple liquid impacts on polymeric matrix composites reinforced with carbon nanotubes. J Wear 294–295:336–346

    Article  Google Scholar 

  11. Panchavarnam D, Menaka S, Anitha A, Arulmozhi MA (2016) Comparative study on the properties of ZnO And ZnS Nanoparticles. Inter J ChemTech Res 9:308–315

    CAS  Google Scholar 

  12. Sungsanit K, Kao N, Bhattacharya SN, Pivsaart S (2010) Physical and rheological properties of plasticized linear and branched PLA. Korea Aust Rheol J 22:187–195

    Google Scholar 

  13. Zhang Y, Park SJ (2017) Enhanced interfacial interaction by grafting carboxylated-macromolecular chains on nanodiamond surfaces for epoxy-based thermosets. J Polym Sci Part B 55:1890–1898

    Article  CAS  Google Scholar 

  14. Zhang Y, Choi JR, Park SJ (2017) Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Compos Part A 101:227–236

    Article  CAS  Google Scholar 

  15. Alvaro R, María T, Acevedo RR (2016) mechanical properties of laminate of residual polyester resin reinforced with recycled newspaper. Inter J ChemTech Res 9:257–262

    Google Scholar 

  16. Vadivelan S, VictorJaya N (2015) Investigation of structural, thermal and magnetic properties of strontium substituted barium hexaferrite synthesized via coprecipitation method. Inter J ChemTech Res 8:404–410

    CAS  Google Scholar 

  17. Sharaf S, Farouk A, Abd El-Hady MM (2016) Novel conductive textile fabric based on polyaniline and CuO Nanoparticles. Inter J PharmTech Res 9:461–472

    CAS  Google Scholar 

  18. Shahenoor Basha SK, Sunita Sundari G, Vijay Kumar K (2016) Optical, thermal and electrical studies of PVP based solid polymer electrolyte for solid state battery applications. Inter J ChemTech Res 9:165–175

    Google Scholar 

  19. Kota AK, Cipriano BH, Duesterberg MK, Gerhson AL, Powell D, Ragharan SR, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40:7400–7406

    Article  CAS  Google Scholar 

  20. Vijayalakshmi A, Vidyavathy B, Chithra B, Hemamalini M (2015) Synthesis, growth, optical, thermal and dielectric studies of lead boro glutamate (PbBG). Inter J ChemTech Res 8:638–642

    CAS  Google Scholar 

  21. Hsissou R, El Harfi A (2016) Theoretical, experimental and viscometric studies of a new phosphorus trifonctionnel epoxy polymer: Triglycidyl Dihydroxy Diphenyl Ether Phosphoric Ester (TGDHDPEPE). Moroc J Chem 4:315–323

    CAS  Google Scholar 

  22. Hsissou R, Bekhta A, El Harfi A (2017) Viscosimetric and rheological studies of a new trifunctional epoxy pre-polymer with noyan ethylene: triglycidyl ether of ethylene of bisphenol A (TGEEBA). J Mater Environ Sci 8:603–610

    CAS  Google Scholar 

  23. Hsissou R, El-Harfi A (2020) Rheological behavior of three polymers and their hybrid composites (TGEEBA/MDA/PN), (HGEMDA/MDA/PN) and (NGHPBAE/MDA/PN). J King Saud Univ Sci 32:235–244

    Article  Google Scholar 

  24. Aghadavoudi F, Golestanian H, Zarasvand KA (2018) Elastic behaviour of hybrid cross-linked epoxy-based nanocomposite reinforced with GNP and CNT: experimental and multiscale modelling. Polym Bull. https://doi.org/10.1007/s00289-018-2602-9

    Article  Google Scholar 

  25. Hsissou R, About S, Berisha A, Berradi B, Assouag M, Hajjaji N, Elharfi A (2019) Experimental, DFT and molecular dynamics simulation on the inhibition performance of the DGDCBA epoxy polymer against the corrosion of the E24 carbon steel in 1.0 M HCl solution. J Mol Struct 1182:340–351

    Article  CAS  Google Scholar 

  26. Hsissou R, Dagdag O, Berradi M et al (2019) Investigation of structure and rheological behavior of a new epoxy polymer pentaglycidyl ether pentabisphenol A of phosphorus and of its composite with natural phosphate. SN Appl Sci 1:869. https://doi.org/10.1007/s42452-019-0911-8

    Article  CAS  Google Scholar 

  27. Maxime R (2017) Fabrication et étude de verres et de fibres optiques basés sur le système AgI-AgPO3-WO3 pour des applications en électrophysiologie. Thèse de doctorat. Université Laval, Canada

  28. Egusa S et al (2010) Multimaterial piezoelectric fibres. Nat Mater 9:643–648

    Article  CAS  Google Scholar 

  29. Chocat N et al (2012) Piezoelectric fibers for conformal acoustics. Adv Mater 24:5327–5332

    Article  CAS  Google Scholar 

  30. Abouraddy AF et al (2007) Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat Mater 6:336–347

    Article  CAS  Google Scholar 

  31. Konorov S, Zheltikov A, Scalora M (2005) Photonic-crystal fiber as a multifunctional optical sensor and sample collector. Opt Express 13:3454–3459

    Article  CAS  Google Scholar 

  32. Yildirim A, Vural M, Yaman M, Bayindir M (2011) Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers. Adv Mater 23:1263–1267

    Article  CAS  Google Scholar 

  33. Gumennik A et al (2012) All-in-fiber chemical sensing. Adv Mater 24:6005–6009

    Article  CAS  Google Scholar 

  34. Stolyarov AM et al (2012) Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers. Opt Express 20:12407–12415

    Article  CAS  Google Scholar 

  35. Van de Werken N, Tekinalp H, Khanbolouki P, Ozcan S, Williams A, Tehrani M (2020) Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit Manuf 31:100962

    Google Scholar 

  36. Hsissou R, Seghiri R, Benzekri Z, Hilali M, Rafik M, Elharfia A (2021) Polymer composite materials: a comprehensive review. Compos Struct 262:113640. https://doi.org/10.1016/j.compstruct.2021.113640

    Article  CAS  Google Scholar 

  37. Udayakumar GP, Muthusamy S, Selvaganesh NB, Sivarajasekar KR, Banat F, Sivamani S, Sivakumar N, Hosseini-Bandegharaei A, Show PL (2021) Biopolymers and composites: properties, characterization and their applications in food, medical and pharmaceutical industries. J Environ Chem Eng 9:105322

    Article  CAS  Google Scholar 

  38. Udayakumar GP, Muthusamy S, Selvaganesh NB, Sivarajasekar KR, Sivamani S, Sivakumar JN, Maran P, Hosseini-Bandegharaei A (2021) Ecofriendly biopolymers and composites: preparation and their applications in water-treatment. Biotechnol Adv 52:107815

    Article  CAS  Google Scholar 

  39. Rajeshkuma G, Arvindh Seshadri S, Devnani GL, Sanjay MR, Siengchin S, Prakash Maran J, Al-Dhabi NA, Karuppiah P, Mariadhas VA, Sivarajasekar N, Anu AR (2021) Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites: a comprehensive review. J Clean Prod 310:1283

    Google Scholar 

  40. Fraczek-Szczypta A, Jantas D, Ciepiela F, Grzonka J (2020) Graphene oxide-conductive polymer nanocomposite coatings obtained bythe EPD method as substrates for neurite outgrowth. Diam Relat Mater 102(2020):107663

    Article  CAS  Google Scholar 

  41. Monsur SO, Benelfellah A, Hocine NA (2020) Clays and carbon nanotubes as hybrid nanofillers in thermoplastic based nanocomposites: a review. Appl Clay Sci 185:105408

    Article  Google Scholar 

  42. Hsissou R, Bekhta A, Dagdag O, El Bachiri A, Rafik M, Elharfi A (2020) Rheological properties of composite polymers and hybrid nanocomposites. Heliyon 6(6):e04187. https://doi.org/10.1016/j.heliyon.2020.e04187

    Article  Google Scholar 

  43. Berzin F (2017) Composites polymères et fibres lignocellulosiques: Propriétés, transformation et caractérisation. Lavoisier, Paris, p 312

    Google Scholar 

  44. Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MW (2007) Analysis of the effects of catalytic bleaching on cotton. Cellulose 14:385–400

    Article  CAS  Google Scholar 

  45. Kim SJ, Um IC (2019) Effect of silkworm variety on characteristics of raw sericin in silk. Fibers Polym 20:271–279

    Article  CAS  Google Scholar 

  46. Kundu BC (1956) Jute-World’s foremost bast fibre I. Botany, agronomy, diseases and pests. Econ Bot 10:103–133

    Article  Google Scholar 

  47. Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26

    Article  CAS  Google Scholar 

  48. Gopinath A, Kumar MS, Elayaperumal A (2014) Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Proc Eng 97:2052–2063

    Article  CAS  Google Scholar 

  49. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979

    Article  CAS  Google Scholar 

  50. Sandeep DR, Prabakaran N, Madhav BTP, Narayana KL, Rakesh Kumar P (2020) Systematic investigation from material characterization to modeling of jute-substrate-based conformal circularly polarized wearable antenna. J Electron Mater. https://doi.org/10.1007/s11664-020-08536-6

    Article  Google Scholar 

  51. Ashim KB, Partha SS, Soumya SP, Ujjal C (2020) Compact MIMO antenna with high port isolation for tripleband applications designed on a biomass material manufactured with coconut husk. Microw Opt Technol Lett 62:3975–3984

    Article  Google Scholar 

  52. The future of sustainable textile (2016). https://www.trustedclothes.com/blog/2016/05/18/the-future-of-sustainable-textiles/; https://www.greenybirddress.com/la-fibre-en-coco-eco-durable-et-resistante/. Accessed 11 Sept 2021

  53. Bui H, Sebaibi N, Boutouil M, Levacher D (2020) Determination and review of physical and mechanical properties of raw and treated coconut fibers for their recycling in construction materials. Fibers 8(37):1–19

    Google Scholar 

  54. FAO (2009) International Year of Natural Fibres. http://www.naturalfibres2009.org/. Accessed 10 Sept 2021

  55. Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym 92:1477–1483

    Article  CAS  Google Scholar 

  56. Ali M (2011) Coconut fibre: a versatile material and its applications in engineering. J Civil Eng Constr Technol 2(9):189–197

    Google Scholar 

  57. Munawar SS, Umemura K, Kawai S (2007) Characterization of the morphological, physical, and mechanical properties of seven non-wood plant fibre bundles. J Wood Sci 53(2):108–113

    Article  Google Scholar 

  58. Basu G, Mishra L, Jose S, Samanta AK (2015) Accelerated retting cum softening of coconut fibre. Ind Crops Prod 77:66–73

    Article  CAS  Google Scholar 

  59. Ecofin gestion publique (2018) L’Egypte devient le le troisième producteur mondial de fibre de verre derrière les Etats-Unis et la Chine. https://www.agenceecofin.com/economie/1501-53488-l-egypte-devient-le-troisieme-producteur-mondial-de-fibre-de-verre-derriere-les-etats-unis-et-la-chine. Accessed 11 Sept 2021

  60. Anthony A, Hedou M, Mouren A, Pham P (2019) Les biocomposites thermodurcissables à base de lin dans l’automobile. Rapport de veille technologique et d’intelligence économique, Grenoble INP-PAGORA

  61. Anh VN (2015) Matériaux composites à renfort végétal pour l’amélioration des performances de systèmes robotiques. Université Blaise Pascal, Clermont

    Google Scholar 

  62. Khan RA, Khan MA, Zaman HU, Pervin S et al (2010) Comparative Studies of Mechanical and Interfacial Properties Between Jute and E-glass Fiber-reinforced Polypropylene Composites. J Reinf Plast Compos 29:1078–1088

    Article  CAS  Google Scholar 

  63. Xiao YC, Amaya R, Lavin-Lopez MP, Sanchez-Silva L, Valverde JS, Kaliaguine S, Rodrigue D (2019) Functionalized graphene-reinforced foams based on polymer matrices: processing and applications, chapter 7. Synth Process Appl Micro Nano Technol. https://doi.org/10.1016/B978-0-12-814548-7.00007-6

    Article  Google Scholar 

  64. Ali U, Bt KJ, Karim A, Buang NA (2015) A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev. https://doi.org/10.1080/15583724.2015.1031377

    Article  Google Scholar 

  65. Malcom PS (1998) Polymer chemistry: an introduction, 3rd edn. Oxford University Press, New York, pp 167–176

    Google Scholar 

  66. Henri L (2007) Thermohygroelastic properties of polymethylmethacrylate. Technical note PR-TN 2007/00440. Koninklijke Philips Electronics N.V., Eindhoven, The Netherlands, pp 11–13

  67. Demir MM, Memesa M, Castignolles P, Wegner G (2006) PMMA/zinc oxide nanocomposites prepared by in-situ bulk polymerization. Macromol Rapid Commun 27(10):763–770

    Article  CAS  Google Scholar 

  68. Hashim H, Adam NI, Zaki NHM, Mahmud ZS, Said CMS, Yahya MZA, Ali AMM (2010) Natural rubber-grafted with 30% Poly (methylmethacrylate) characterization for application in lithium polymer battery. In: Conference on Science and Social Research (CSSR 2010), Kuala Lumpur, Malaysia, pp 485–488

  69. Henry AC, Tutt TJ, Galloway M, Davidson YY, McWhorter CS, Soper SA, McCarley RL (2000) Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices”. Anal Chem 72(21):5331–5337

    Article  CAS  Google Scholar 

  70. Lee LH, Chen WC (2001) High-refractive-index thin films prepared from trialkoxysilane-capped poly (methyl methacrylate), Titania materials. Chem Mater 15:1137–1142

    Article  Google Scholar 

  71. Shah JJ, Geist J, Locascio LE, Gaitan M, Rao MV, Vreeland WN (2006) Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis”. Electrophoresis 27(19):3788–3796

    Article  CAS  Google Scholar 

  72. Adhikari B, Majumdar S (2004) Polymers in sensor applications”. Prog Polym Sci 29(7):699–766

    Article  CAS  Google Scholar 

  73. Saxena P, Shukla P (2021) A comparative analysis of the basic properties and applications of poly (vinylidene fluoride) (PVDF) and poly (methyl methacrylate) (PMMA). Polym Bull. https://doi.org/10.1007/s00289-021-03790-y

    Article  Google Scholar 

  74. Isha A, Yusof NA, Ahmad M, Suhendra D, Yunus WMZW, Zainal Z (2006) A chemical sensor for trace V(V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate”. Sens Actuators B 114(1):344–349

    Article  CAS  Google Scholar 

  75. Kost J, Langer R (2012) Responsive polymeric delivery systems. Adv Drug Deliv Rev 64:327–341

    Article  Google Scholar 

  76. Beruto DT, Botter R, Fini M (2002) The effect of water in inorganic microsponges of calcium phosphates on the porosity and permeability of composites made with polymethylmethacrylate. Biomaterials 23(12):2509–2517

    Article  CAS  Google Scholar 

  77. Shi M, Kretlow JD, Spicer PP, Tabata Y, Demian N, Wong ME, Kasper FK, Mikos AG (2011) Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J Control Release 152(1):196–205

    Article  CAS  Google Scholar 

  78. Mishra S, Sen G (2011) Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications”. Int J Biol Macromol 48(4):688–694

    Article  CAS  Google Scholar 

  79. Mark JE (2007) Physical Properties of Polymers Handbook, 2nd edn. Springer, New York, pp 3–8

    Book  Google Scholar 

  80. Kutz M (2002) Handbook of materials selection. Wiley, New Jersey, p 341

    Book  Google Scholar 

  81. Weibull W (1939) A statistical theory of the strength of materials. R Swed Acad Engl Sci Proc 151:1–45

    Google Scholar 

  82. Ladevèse P, Lubineau G (2003) Pont entre micro et méso mécaniques des composites stratifies. Elsevier Compos Rendus Mécanique 331:537–544

    Article  Google Scholar 

  83. Lissart N (1997) Damage and failure in ceramic matrix minicomposites :experimental study and model. Acta Mater 45:1025–1044

    Article  CAS  Google Scholar 

  84. Sébastien GRANGE, Jean-Loup PRENSIER (2006) Annexe : determination des paramètres de Weibull Le modèle de Weibull : un critère de rupture probabiliste. Université Paris-Saclay, 01/07/2006 http://eduscol.education.fr/sti/si-ens-cachan/. Accessed Mar 2020

  85. Duy CN (2016) Caractérisation de l'interface fibre/matrice. Application aux composites polypropylène/chanvre. Thèse de Doctorat à l’université de TROYES

  86. Kaouche N, Mebrek M, Mokaddem A, Doumi B et al (2021) Theoretical study of the effect of the plant and synthetic fibers on the fiber-matrix interface damage of biocomposite materials based on PHA (polyhydroxyalkanoates) biodegradable matrix. Polym Bull. https://doi.org/10.1007/s00289-021-03849-w

    Article  Google Scholar 

  87. Li Y, Pickering K, Farrell R (2009) Determination of interfacial shear strength of white rot fungi treated hemp fibre reinforced polypropylene. Compos Sci Technol 69:1165–1171

    Article  CAS  Google Scholar 

  88. Lebrun GA (1996) Thermomechanical behavior andlifecycle of ceramic matrix composites: theory and experience PhD thesis, Université de Bordeaux

  89. El Guerjouma R, Faiz A, Godin N, Bentahar M, Baboux J-C (2002) Linear and nonlinearultrasonics for material damage evaluation and health monitoring. Matériauxet Tech 90:48–52. https://doi.org/10.1051/mattech/200290120048s

    Article  Google Scholar 

  90. El Guerjouma R, Deschamps M, Gérard A (1992) Acoustoelasticity under variable of incidence: a determination of the third order of the elastic constants. Acustica 77:183–192

    Google Scholar 

  91. Assaf I, Belkheir M, Mokaddem A, Doumi B, Boutaous A (2021) Effect of fiber-matrix interface decohesion on the behavior of thermoset and thermoplastic composites reinforced with natural fibers: a comparative study. Mater Sci. https://doi.org/10.5755/j02.ms.28615

    Article  Google Scholar 

  92. Mokaddem A, Alami M, Boutaous A (2012) A study by a genetic algorithm for optimizing the arrangement of the fibers on the damage to the fiber–matrix interface of a composite material. J Text Inst 103(12):1376–1382

    Article  Google Scholar 

  93. Benyamina B, Mokaddem A, Doumi B et al (2021) Study and modeling of thermomechanical properties of jute and Alfa fiber-reinforced polymer matrix hybrid biocomposite materials. Polym Bull 78:1771–1795. https://doi.org/10.1007/s00289-020-03183-7

    Article  CAS  Google Scholar 

  94. Achour B, Mokaddem A, Doumi B, Ziadi A, Belarbi L, Boutaous A (2021) A numerical study for determining the effect of raffia, alfa and sisal fibers on the fiber-matrix interface damage of biocomposite materials. Curr Mater Sci. https://doi.org/10.2174/2666145414666210811154840

    Article  Google Scholar 

  95. Mokaddem A, Alami M, Temimi L, Boutaous A (2012) Study of the effect of heat stress on the damage of the fibre matrix interface of a composite material (T300/914) by means of a genetic algorithm. Fibres Text East Eur 6(95):108–111

    Google Scholar 

  96. Belhadj FA, Belkheir M, Mokaddem A, Doumi B, Boutaous A (2022) Numerical characterization of the humidity effect on the fiber-matrix interface damage of hybrid composite material based on vinyl ester polymer matrix for engineering applications. Emerg Mater. https://doi.org/10.1007/s42247-022-00353-3

    Article  Google Scholar 

  97. Bui H, Sebaibi N, Boutouil M, Levacher D (2020) Determination and review of physical and mechanical properties of raw and treated coconut fibers for their recycling in construction materials. Fibers 8:37. https://doi.org/10.3390/fib8060037

    Article  CAS  Google Scholar 

  98. Obada DO, Dodoo-Arhin D, Jimoh A et al (2021) The effect of acid aging on the mechanical and tribological properties of coir–coconut husk-reinforced low-density polyethylene composites. Polym Bull 78:3489–3508. https://doi.org/10.1007/s00289-020-03260-x

    Article  CAS  Google Scholar 

  99. Ahmad W, Farooq SH, Usman M, Khan M, Ahmad A, Aslam F, Yousef RA, Abduljabbar HA, Sufian M (2020) Effect of coconut fiber length and content on properties of high strength concrete. Materials 13:1075. https://doi.org/10.3390/ma13051075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the General Direction of Scientific Research and Technological Development of the Ministry of Higher Education and Scientific Research of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Allel Mokaddem or Bendouma Doumi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkheir, M., Boutaleb, M., Mokaddem, A. et al. Predicting the effect of coconut natural fibers for improving the performance of biocomposite materials based on the poly (methyl methacrylate)-PMMA polymer for engineering applications. Polym. Bull. 80, 1975–1996 (2023). https://doi.org/10.1007/s00289-022-04166-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04166-6

Keywords

Navigation