Skip to main content
Log in

Polycaprolactone-based materials in wound healing applications

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Wound care possesses a substantial burden on healthcare services, resulting in the increased development of wound care products. Biodegradable polymeric materials have immense potential as wound dressing, therefore popular among the scientific community globally. Poly (є-caprolactone) (PCL), a versatile and promising biomaterial of synthetic origin, has been extensively employed in wound healing applications nowadays. The modification, suitability, availability and cost-effectiveness of PCL make it a polymeric material of choice in various biomedical applications. Owing to its impressive biological properties and mechanical strength, it has been widely employed in wound healing therapy. This review paper also highlights the importance of PCL as polymeric material in scaffold fabrication designed for wounds and its combination with other polymers for wound healing. Recent technological advances, patents and opportunities of PCL-based scaffolds have also been portrayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

bFGF:

Basic fibroblast growth factor

VEGF:

Vascular endothelial growth factor

EGF:

Epidermal growth factor

FESEM:

Field emission scanning electron microscopy

SOD:

Superoxide dismutase

P. aeruginosa :

Pseudomonas aeruginosa

E. coli :

Escherichia coli

S aureus :

Staphylococcus aureus

MRSA:

Methicillin resistant S. aureus strains

TEM:

Transmission electron microscopy

ECM:

Extracellular matrix

References

  1. Robson MC, Steed DL, Franz MG (2001) Wound healing: biologic features and approaches to maximize healing trajectories. Curr Probl Surg 2(38):72–140. https://doi.org/10.1067/msg.2001.111167

    Article  Google Scholar 

  2. Selvaraj D, Viswanadha VP, Elango S (2015) Wound dressings-a review. BioMedicine. https://doi.org/10.7603/s40681-015-0022-9

    Article  Google Scholar 

  3. Guo SA, DiPietro LA (2010) Factors affecting wound healing. J Dent Res. 89(3):219–229. https://doi.org/10.1177/0022034509359125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. Br. J. Dermatol. 163(2):257–268. https://doi.org/10.1111/j.1365-2133.2010.09804.x

    Article  CAS  PubMed  Google Scholar 

  5. Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, Nuutila K, Giatsidis G, Mostafalu P, Derakhshandeh H, Yue K (2018) Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138–166. https://doi.org/10.1016/j.addr.2018.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Artuc M, Hermes B, Stckelings UM, Grützkau A, Henz BM (1999) Mast cells and their mediators in cutaneous wound healing–active participants or innocent bystanders. Exp Dermatol 8(1):1–16. https://doi.org/10.1111/j.1600-0625.1999.tb00342.x

    Article  CAS  PubMed  Google Scholar 

  7. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542. https://doi.org/10.1177/147323000903700531

    Article  CAS  PubMed  Google Scholar 

  8. Schaffer M, Barbul A (1998) Lymphocyte function in wound healing and following injury. Br J Surg 85(4):444–460. https://doi.org/10.1046/j.1365-2168.1998.00734.x

    Article  CAS  PubMed  Google Scholar 

  9. Sood A, Granick MS, Tomaselli NL (2014) Wound dressings and comparative effectiveness data. Adv Wound Care 3(8):511–529. https://doi.org/10.1089/wound.2012.0401

    Article  Google Scholar 

  10. Nair LS, Laurencin CT (2005) Polymers as biomaterials for tissue engineering and controlled drug delivery. In: Lee K, Kaplan D (eds) Tissue Engineering I. Springer, Berlin

    Google Scholar 

  11. Mele E (2016) Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J Mater Chem B 4(28):4801–4812. https://doi.org/10.1039/C6TB00804F

    Article  CAS  PubMed  Google Scholar 

  12. Vroman I, Tighzert L (2008) Biodegradable polymers. Materials 2(2):307–344. https://doi.org/10.3390/ma2020307

    Article  CAS  Google Scholar 

  13. Chandra RU, Rustgi R (1998) Biodegradable polymers. Progress. Prog Polym Sci 23(7):1273–1335

    Article  CAS  Google Scholar 

  14. Williams DF (2019) Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol 7:127. https://doi.org/10.3389/fbioe.2019.00127

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patel H, Bonde M, Srinivasan G (2011) Biodegradable polymer scaffold for tissue engineering. Trends Biomater Artif Organs 25(1):20–29

    Google Scholar 

  16. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  17. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 5(1):1–16. https://doi.org/10.22203/eCM.v005a01

    Article  CAS  PubMed  Google Scholar 

  18. Mondal D, Griffith M, Venkatraman SS (2016) Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater Polym Biomater 65:255–265. https://doi.org/10.1080/00914037.2015.1103241

    Article  CAS  Google Scholar 

  19. Joseph B, Augustine R, Kalarikkal N, Thomas S, Seantier B, Grohens Y (2019) Recent advances in electrospun polycaprolactone based scaffolds for wound healing and skin bioengineering applications. Mater. Today Commun 19:319–335. https://doi.org/10.1016/j.mtcomm.2019.02.009

    Article  CAS  Google Scholar 

  20. Van Natta FJ, Hill JW, Carruthers WH (1934) Polymerization and ring formation, ε-caprolactone and its polymers. J. Am. Chem. Soc. 56:455–457. https://doi.org/10.1021/ja01317a053

    Article  Google Scholar 

  21. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10):1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

    Article  CAS  Google Scholar 

  22. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N (2018) PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 29(7–9):863–893. https://doi.org/10.1080/09205063.2017.1394711

    Article  CAS  PubMed  Google Scholar 

  23. Liu H, Ding X, Zhou G, Li P, Wei X, Fan Y (2013) Electrospinning of nanofibers for tissue engineering applications. J Nanomater. https://doi.org/10.1155/2013/495708

    Article  Google Scholar 

  24. Gizaw M, Faglie A, Pieper M, Poudel S, Chou SF (2019) The role of electrospun fiber scaffolds in stem cell therapy for skin tissue regeneration. Med One. https://doi.org/10.20900/mo.20190002

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip. Rev. 2(5):510–525. https://doi.org/10.1002/wnan.100

    Article  CAS  Google Scholar 

  26. Dwivedi R, Kumar S, Pandey R, Mahajan A, Nandana D, Katti DS, Mehrotra D (2020) Polycaprolactone as biomaterial for bone scaffolds: review of literature. J Oral Biol Craniofac Res. 10(1):381–388. https://doi.org/10.1016/j.jobcr.2019.10.003

    Article  PubMed  Google Scholar 

  27. Espinoza SM, Patil HI, San Martin Martinez E, Casañas Pimentel R, Ige PP (2020) Poly-ε-caprolactone (PCL) a promising polymer for pharmaceutical and biomedical applications: focus on nanomedicine in cancer. Int J Polym Mater Polym Biomater 69(2):85–126. https://doi.org/10.1080/00914037.2018.1539990

    Article  CAS  Google Scholar 

  28. Khor HL, Ng KW, Schantz JT, Phan TT, Lim TC, Teoh SH, Hutmacher DW (2002) Poly (ε-caprolactone) films as a potential substrate for tissue engineering an epidermal equivalent. Mater Sci Eng C 20(1–2):71–75. https://doi.org/10.1016/S0928-4931(02)00015-2

    Article  Google Scholar 

  29. Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, Asad M (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7(1):1–21. https://doi.org/10.1007/s40204-018-0083-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 12:3117–3145. https://doi.org/10.2147/DDDT.S165440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jenkins MJ, Harrison KL (2006) The effect of molecular weight on the crystallization kinetics of polycaprolactone. Polym Adv Technol 17(6):474–478. https://doi.org/10.1002/pat.733

    Article  CAS  Google Scholar 

  32. Hayashi T (1994) Biodegradable polymers for biomedical uses. Prog Polym Sci 19(4):663–702. https://doi.org/10.1016/0079-6700(94)90030-2

    Article  CAS  Google Scholar 

  33. Guarino V, Gentile G, Sorrentino L, Ambrosio L (2017) Polycaprolactone: synthesis, properties, and applications. Encyclopedia Polym Sci Technol. https://doi.org/10.1002/0471440264.pst658

    Article  Google Scholar 

  34. Cayuela J, Bounor-Legaré V, Cassagnau P, Michel A (2006) Ring-opening polymerization of ε-caprolactone initiated with titanium n-propoxide or titanium phenoxide. Macromolecules 39(4):1338–1346. https://doi.org/10.1021/ma051272v

    Article  CAS  Google Scholar 

  35. Chang KY, Lee YD (2009) Ring-opening polymerization of ε-caprolactone initiated by the antitumor agent doxifluridine. Acta Biomater 5(4):1075–1081. https://doi.org/10.1016/j.actbio.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  36. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38(12):3484–3504. https://doi.org/10.1039/B820162P

    Article  CAS  PubMed  Google Scholar 

  37. Kricheldorf HR, Stricker A, Langanke D (2001) Tin carboxylates as Initiators of ε-caprolactone. Macromol Chem Phys 202(15):2963–2970. https://doi.org/10.1002/1521-3935(20011001)202:15

    Article  CAS  Google Scholar 

  38. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ϵ-caprolactone microspheres and nanospheres: an overview. Int. J. Pharm. 278(1):1–23. https://doi.org/10.1016/j.ijpharm.2004.01.044

    Article  CAS  PubMed  Google Scholar 

  39. Nisida H, Tokiwa Y (1993) Distribution of poly (β-hydroxybutyrate) and poly (ε-caprolacton) aerobic degrading microorganisms in different environments. J Environ Polym Degrad 1(3):227–233. https://doi.org/10.1007/BF01458031

    Article  Google Scholar 

  40. Lam CX, Teoh SH, Hutmacher DW (2007) Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium. Polym Int 56(6):718–728. https://doi.org/10.1002/pi.2195

    Article  CAS  Google Scholar 

  41. Joshi P, Madras G (2008) Degradation of polycaprolactone in supercritical fluids. Polym Degrad Stab 93(10):1901–1908. https://doi.org/10.1016/j.polymdegradstab.2008.07.002

    Article  CAS  Google Scholar 

  42. Woodward SC, Brewer PS, Moatamed F, Schindler A, Pitt CG (1985) The intracellular degradation of poly(epsilon-caprolactone). J Biomed Mater Res 19:437–444. https://doi.org/10.1002/jbm.820190408

    Article  CAS  PubMed  Google Scholar 

  43. Sun H, Mei L, Song C, Cui X, Wang P (2006) The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. https://doi.org/10.1016/j.biomaterials.2005.09.019.w

    Article  PubMed  PubMed Central  Google Scholar 

  44. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2015) Electrospun poly (ε-caprolactone)-based skin substitutes: in vivo evaluation of wound healing and the mechanism of cell proliferation. J Biomed Mater Res Part B Appl Biomater. https://doi.org/10.1002/jbm.b.33325

    Article  Google Scholar 

  45. Augustine R, Kalarikkal N, Thomas S (2016) Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int J Polym Mater Polym Biomater 65:28–37. https://doi.org/10.1080/00914037.2015.1055628

    Article  CAS  Google Scholar 

  46. Augustine R, Saha A, Jayachandran VP, Thomas S, Kalarikkal N (2015) Dose-dependent effects of gamma irradiation on the materials properties and cell proliferation of electrospun polycaprolactone tissue engineering scaffolds. Int J Polym Mater Polym Biomater 64:526–533. https://doi.org/10.1080/00914037.2014.977900

    Article  CAS  Google Scholar 

  47. Abedalwafa M, Wang F, Wang L, Li C (2013) Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34(2):123–140

    CAS  Google Scholar 

  48. Raina N, Rani R, Pahwa R, Gupta M (2020) Biopolymers and treatment strategies for wound healing: an insight view. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2020.1838518

    Article  Google Scholar 

  49. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923. https://doi.org/10.1002/jps.21210

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Li T, Han Y, Li F, Liu Y (2020) Recent development of electrospun wound dressing. Curr Opin Biomed Eng. https://doi.org/10.1016/j.cobme.2020.100247

    Article  Google Scholar 

  51. Gleadall A, Pan J, Kruft MA, Kellomäki M (2014) Degradation mechanisms of bioresorbable polyesters Part 2 Effects of initial molecular weight and residual monomer. Acta Biomater 10(5):2233–2240. https://doi.org/10.1016/j.actbio.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  52. Gleadall A, Pan J, Kruft MA, Kellomäki M (2014) Degradation mechanisms of bioresorbable polyesters Part 1 Effects of random scission, end scission and autocatalysis. Acta Biomater 10(5):2223–2232. https://doi.org/10.1016/j.actbio.2013.12.039

    Article  CAS  PubMed  Google Scholar 

  53. Díaz Tajada E, Sandonis Oleaga I, Valle García MB (2014) In vitro degradation of Poly (caprolactone)/nHA composites. J Nanomater. https://doi.org/10.1155/2014/802435

    Article  Google Scholar 

  54. Wang W, Lu KJ, Yu CH, Huang QL, Du YZ (2019) Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology. 17(1):82. https://doi.org/10.1186/s12951-019-0514-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Joshi A, Xu Z, Ikegami Y, Yoshida K, Sakai Y, Joshi A, Kaur T, Nakao Y, Yamashita YI, Baba H, Aishima S (2021) Exploiting synergistic effect of externally loaded bFGF and endogenous growth factors for accelerated wound healing using heparin functionalized PCL/gelatin co-spun nanofibrous patches. Chem Eng Trans 404:126518. https://doi.org/10.1016/j.cej.2020.126518

    Article  CAS  Google Scholar 

  56. Hu J, Song Y, Zhang C, Huang W, Chen A, He H, Zhang S, Chen Y, Tu C, Liu J, Xuan X (2020) Highly aligned electrospun collagen/polycaprolactone surgical sutures with sustained release of growth factors for wound regeneration. ACS Appl Bio Mater 3(2):965–976. https://doi.org/10.1021/acsabm.9b01000

    Article  CAS  PubMed  Google Scholar 

  57. Wang K, Chen X, Pan Y, Cui Y, Zhou X, Kong D, Zhao Q (2015) Enhanced vascularization in hybrid PCL/gelatin fibrous scaffolds with sustained release of VEGF. Biomed Res Int. https://doi.org/10.1155/2015/865076

    Article  PubMed  PubMed Central  Google Scholar 

  58. Golchin A, Nourani MR (2020) Effects of bilayer nanofibrillar scaffolds containing epidermal growth factor on full-thickness wound healing. Polym Adv Technol 31(11):2443–2452. https://doi.org/10.1002/pat.4960

    Article  CAS  Google Scholar 

  59. García-Salinas S, Evangelopoulos M, Gámez-Herrera E, Arruebo M, Irusta S, Taraballi F, Mendoza G, Tasciotti E (2020) Electrospun anti-inflammatory patch loaded with essential oils for wound healing. Int J Pharm 577:119067. https://doi.org/10.1016/j.ijpharm.2020.119067

    Article  CAS  PubMed  Google Scholar 

  60. Eğri Ö, Erdemir N (2019) Production of Hypericum perforatum oil-loaded membranes for wound dressing material and in vitro tests. Artif Cells Nanomed Biotechnol 47(1):1404–1415. https://doi.org/10.1080/21691401.2019.1596933

    Article  CAS  PubMed  Google Scholar 

  61. Unalan I, Endlein SJ, Slavik B, Buettner A, Goldmann WH, Detsch R, Boccaccini AR (2019) Evaluation of electrospun poly (ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing. Pharmaceutics 11(11):570. https://doi.org/10.3390/pharmaceutics11110570

    Article  CAS  PubMed Central  Google Scholar 

  62. El Fawal G, Hong H, Mo X, Wang H (2021) Fabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application. J Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2021.102501

    Article  Google Scholar 

  63. Ajmal G, Bonde GV, Mittal P, Khan G, Pandey VK, Bakade BV, Mishra B (2019) Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: a potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int J Pharm 567:118480. https://doi.org/10.1016/j.ijpharm.2019.118480

    Article  CAS  PubMed  Google Scholar 

  64. Jafari A, Amirsadeghi A, Hassanajili S, Azarpira N (2020) Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2020.119413

    Article  PubMed  Google Scholar 

  65. Mohammadi Z, Sharif Zak M, Majdi H, Mostafavi E, Barati M, Lotfimehr H, Ghaseminasab K, Pazoki-Toroudi H, Webster TJ, Akbarzadeh A (2019) The effect of chrysin–curcumin-loaded nanofibres on the wound-healing process in male rats. Artif Cells Nanomed Biotechnol 47(1):1642–1652. https://doi.org/10.1080/21691401.2019.1594855

    Article  CAS  PubMed  Google Scholar 

  66. Faraji S, Nowroozi N, Nouralishahi A, Shayeh JS (2020) Electrospun poly-caprolactone/graphene oxide/quercetin nanofibrous scaffold for wound dressing: Evaluation of biological and structural properties. Life Sci 257:118062. https://doi.org/10.1016/j.lfs.2020.118062

    Article  CAS  PubMed  Google Scholar 

  67. Lan X, Liu Y, Wang Y, Tian F, Miao X, Wang H, Tang Y (2021) Coaxial electrospun PVA/PCL nanofibers with dual release of tea polyphenols and ε-poly (L-lysine) as antioxidant and antibacterial wound dressing materials. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2021.120525

    Article  PubMed  Google Scholar 

  68. Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S (2017) Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci 3(3):163–175. https://doi.org/10.1021/acscentsci.6b00371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mohseni M, Shamloo A, Aghababaie Z, Afjoul H, Abdi S, Moravvej H, Vossoughi M (2019) A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation. Int J Pharm 564:350–358. https://doi.org/10.1016/j.ijpharm.2019.04.068

    Article  CAS  PubMed  Google Scholar 

  70. Fei Y, Huang Q, Hu Z, Yang X, Yang B, Liu S (2020) Biomimetic cerium oxide loaded gelatin PCL nano systems for wound dressing on cutaneous care management of multidrug-resistant bacterial wound healing. J Clust Sci. https://doi.org/10.1007/s10876-020-01866-9

    Article  Google Scholar 

  71. Ghiyasi Y, Salahi E, Esfahani H (2021) Synergy effect of Urtica dioica and ZnO NPs on microstructure, antibacterial activity and cytotoxicity of electrospun PCL scaffold for wound dressing application. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2021.102163

    Article  Google Scholar 

  72. Hivechi A, Bahrami SH, Siegel RA, Milan PB (2020) In vitro and in vivo studies of biaxially electrospun poly (caprolactone)/gelatin nanofibers, reinforced with cellulose nanocrystals, for wound healing applications. Cellulose 27:5179–5196. https://doi.org/10.1007/s10570-020-03106-9

    Article  CAS  Google Scholar 

  73. Yang S, Li X, Liu P, Zhang M, Wang C (2020) Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual-drug release for wound-healing applications.". ACS Biomater Sci Eng 6(8):4666–4676. https://doi.org/10.1021/acsbiomaterials.0c00674

    Article  CAS  PubMed  Google Scholar 

  74. Mohammadi MR, Kargozar S, Bahrami SH (2020) An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2020.109105

    Article  Google Scholar 

  75. Yu H, Chen X, Cai J, Ye D, Wu Y, Fan L, Liu P (2019) Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing. Chem Eng Trans 369:253–262. https://doi.org/10.1016/j.cej.2019.03.091.f

    Article  CAS  Google Scholar 

  76. Beznoska J, Uhlík J, Kestlerová A, Královič M, Divín R, Fedačko J, Beneš J, Beneš M, Vocetková K, Sovková V, Nečas A, Nečasová A, Holešovský J, Amler E (2019) PVA and PCL nanofibers are suitable for tissue covering and regeneration. Physiol Res 68:S501–S508. https://doi.org/10.33549/physiolres.934389

    Article  CAS  PubMed  Google Scholar 

  77. Ahmed MK, Menazea AA, Abdelghany AM (2020) Blend biopolymeric nanofibrous scaffolds of cellulose acetate/ε-polycaprolactone containing metallic nanoparticles prepared by laser ablation for wound disinfection applications. Int J Biol Macromol 15(155):636–644. https://doi.org/10.1016/j.ijbiomac.2020.03.257

    Article  CAS  Google Scholar 

  78. Khoshnevisan K, Maleki H, Samadian H, Doostan M, Khorramizadeh MR (2019) Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. Int J Biol Macromol 1(140):1260–1268. https://doi.org/10.1016/j.ijbiomac.2019.08.207

    Article  CAS  Google Scholar 

  79. Chanchal A, Vohra R, Elesela S, Bhushan L, Kumar S, Kumar S, Ahmad S, Pandey R (2014) Gelatin biopolymer: a journey from micro to nano. J Pharm Res 8(10):1387–1397

    Google Scholar 

  80. Slade L, Levine H (1987) Polymer-chemical properties of gelatin in foods. Advances in meat research, USA

    Google Scholar 

  81. Yao K, Mao J, Yin Y, Liu WE, Cui YU, Cai K, Zhao F (2002) Chitosan/gelatin network-based biomaterials in tissue engineering. Biomed Eng: Appl, Basis Commun 14(3):115–121. https://doi.org/10.4015/S1016237202000176

    Article  Google Scholar 

  82. Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Daroonparvar M, Chen XB (2019) Antibacterial activity and in vivo wound healing evaluation of polycaprolactone-gelatin methacryloyl-cephalexin electrospun nanofibrous. Mater Lett 256:126618. https://doi.org/10.1016/j.matlet.2019.126618

    Article  CAS  Google Scholar 

  83. Thanh NT, Hieu MH, Phuong NT, Thuan TD, Thu HN, Do Minh T, Dai HN, Thi HN (2018) Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Mater Sci Eng C 91:318–329. https://doi.org/10.1016/j.msec.2018.05.039

    Article  CAS  Google Scholar 

  84. Fleck CA, Simman R (2010) Modern collagen wound dressings: function and purpose. J Am Coll Certif Wound Spec 2(3):50–54. https://doi.org/10.1016/j.jcws.2010.12.003

    Article  Google Scholar 

  85. Gingras M, Paradis I, Berthod F (2003) Nerve regeneration in a collagen–chitosan tissue-engineered skin transplanted on nude mice. Biomaterials 24(9):1653–1661. https://doi.org/10.1016/S0142-9612(02)00572-0

    Article  CAS  PubMed  Google Scholar 

  86. Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136. https://doi.org/10.1016/j.ijpharm.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  87. Ghorbani M, Nezhad-Mokhtari P, Ramazani S (2020) Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int J Biol Macromol 153:921–930. https://doi.org/10.1016/j.ijbiomac.2020.03.036

    Article  CAS  PubMed  Google Scholar 

  88. Chong C, Wang Y, Fathi A, Parungao R, Maitz PK, Li Z (2019) Skin wound repair: results of a pre-clinical study to evaluate electropsun collagen–elastin–PCL scaffolds as dermal substitutes. Burns 45:1639–1648. https://doi.org/10.1016/j.burns.2019.04.014

    Article  PubMed  Google Scholar 

  89. Yao K, Mao J, Yin Y, Liu WE, Cui YU, Cai K, Zhao F (2002) Chitosan/gelatin network based biomaterials in tissue engineering. Biomed Eng: Appl, Basis Commun 14(3):115–121. https://doi.org/10.4015/S1016237202000176

    Article  Google Scholar 

  90. Hirano S, Midorikawa T (1998) Novel method for the preparation of N-acylchitosan fiber and N-acylchitosan-cellulose fiber. Biomaterials 19(1–3):293–297. https://doi.org/10.1016/S0142-9612(97)00216-0

    Article  CAS  PubMed  Google Scholar 

  91. Levengood SL, Erickson AE, Chang FC, Zhang M (2017) Chitosan–poly (caprolactone) nanofibers for skin repair. J Mater Chem B 5:1822–1833

    Article  CAS  Google Scholar 

  92. Hajilou H, Farahpour MR, Hamishehkar H (2020) Polycaprolactone nanofiber coated with chitosan and Gamma oryzanol functionalized as a novel wound dressing for healing infected wounds. Int J Biol Macromol 164:2358–2369. https://doi.org/10.1016/j.ijbiomac.2020.08.079

    Article  CAS  PubMed  Google Scholar 

  93. Lee SB, Jeon HW, Lee YW, Cho SK, Lee YM, Song KW, Park MH, Hong SH (2003) Artificial dermis composed of gelatin, hyaluronic acid and (1→ 3), (1→ 6)-β-glucan. Macromole Res 11(5):368–74. https://doi.org/10.1007/BF03218378

    Article  CAS  Google Scholar 

  94. Park SN, Lee HJ, Lee KH, Suh H (2003) Biological characterization of EDC-crosslinked collagen–hyaluronic acid matrix in dermal tissue restoration. Biomaterials 24(9):1631–41. https://doi.org/10.1016/S0142-9612(02)00550-1

    Article  CAS  PubMed  Google Scholar 

  95. Zhang H, Zhang K, Zhang X, Zhu Z, Yan S, Sun T, Guo A, Jones J, Steen RG, Shan B, Zhang J (2015) Comparison of two hyaluronic acid formulations for safety and efficacy (CHASE) study in knee osteoarthritis: a multicenter, randomized, double-blind, 26-week non-inferiority trial comparing Durolane to Artz. Arthritis Res Ther 17(1):51. https://doi.org/10.1186/s13075-015-0557-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Qian Y, Li L, Jiang C, Xu W, Lv Y, Zhong L, Cai K, Yang L (2015) The effect of hyaluronan on the motility of skin dermal fibroblasts in nanofibrous scaffolds. Int J Biol Macromol 79:133–143. https://doi.org/10.1016/j.ijbiomac.2015.04.059

    Article  CAS  PubMed  Google Scholar 

  97. Jin HJ, Park J, Valluzzi R, Cebe P, Kaplan DL (2004) Biomaterial films of Bombyx M ori silk Fibroin with Poly (ethylene oxide). Biomacromol 5:711–717

    Article  CAS  Google Scholar 

  98. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54:139–148. https://doi.org/10.1002/1097-4636(200101)54:1%3c139::AID-JBM17%3e3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  99. Kanokpanont S, Damrongsakkul S, Ratanavaraporn J, Aramwit P (2012) An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing. Int J Pharm 436:141–153. https://doi.org/10.1016/j.ijpharm.2012.06.046

    Article  CAS  PubMed  Google Scholar 

  100. Wu G, Ma X, Fan L, Gao Y, Deng H, Wang Y (2020) Accelerating dermal wound healing and mitigating excessive scar formation using LBL modified nanofibrous mats. Mater Des 185:108265. https://doi.org/10.1016/j.matdes.2019.108265

    Article  CAS  Google Scholar 

  101. Keirouz A, Zakharova M, Kwon J, Robert C, Koutsos V, Callanan A, Chen X, Fortunato G, Radacsi N (2020) High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Mater Sci Eng 112:110939. https://doi.org/10.1016/j.msec.2020.110939

    Article  CAS  Google Scholar 

  102. Elvers D, Song CH, Steinbüchel A, Leker J (2016) Technology trends in biodegradable polymers: evidence from patent analysis. Polym Rev 56:584–606. https://doi.org/10.1080/15583724.2015.1125918

    Article  CAS  Google Scholar 

  103. Yoon J, Kim K (2012) Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics 90:445–461. https://doi.org/10.1007/s11192-011-0543-2

    Article  Google Scholar 

  104. Skardal A, Atala A, Murphy SV (2019) Amniotic membrane and its use in wound healing and tissue engineering constructs. Wake Forest University Health Sciences. EP2897625B1

  105. Schubert SY (2018) Implantable liposome embedded matrix composition, uses thereof, and polycaprolactone particles as scaffolds for tissue regeneration. Bonus Cellora Ltd. US9889232B2.

  106. Lelkes PI, Woerdeman DL, Lin L, Katsir A (2017) Alimentary Protein-Based Scaffolds (APS) for Wound Healing, Regenerative Medicine and Drug Discovery. Drexel University. US20170319743A1

  107. Macewan M. Tissue substitute materials and methods for tissue repair. Acera Surgical Inc. US10632228B2

  108. Kaplan DL, Mandal BB (2018) Methods of producing and using silk microfibers. Tufts University. US9925301B2

  109. Johnson JK (2020) Nanofiber scaffolds for biological structures. Nanofiber Solutions LLC. US10653635B2

  110. Haff M (2020) Method and apparatus for accumulating cross-aligned fiber in an electrospinning device. University of central oklahoma. US10640888B1

  111. Yang H, Long M, Zhang Y, Ouyang J, Fu L (2020) Nano-oxide/kaolin composite hemostatic antibacterial material, hemostatic healing-promoting dressing and preparation method thereof. Central south univ. US20200230283A1.

  112. Ala'AldeenD, Mahdavi J, Soultanas P (2020) Biofilm inhibiting compositions enhancing weight gain in livestock. US20200316008A1.

  113. Xie, J, Wang G (2020) Electrospun nanofiber-based dressings and methods of manufacture and use thereof. WO2020159946A1.

  114. Trappey AJ, Trappey CV, Wu CY, Lin CW (2012) A patent quality analysis for innovative technology and product development. Adv Eng Inform. https://doi.org/10.1016/j.aei.2011.06.005

    Article  Google Scholar 

  115. Yoon J, Kim K (2011) Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks. Scientometrics 88:213–228. https://doi.org/10.1007/s11192-011-0383-0

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) received no financial support from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Gupta.

Ethics declarations

Conflict of interest

There is no conflict of interest with reference to the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, N., Pahwa, R., Khosla, J.K. et al. Polycaprolactone-based materials in wound healing applications. Polym. Bull. 79, 7041–7063 (2022). https://doi.org/10.1007/s00289-021-03865-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03865-w

Keywords

Navigation