Skip to main content

Advertisement

Log in

Effect of gamma irradiation on thermal, mechanical and water absorption behavior of LLDPE hybrid composites reinforced with date pit (Phoenix dactylifera) and glass fiber

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Date pit/ glass fiber reinforced LLDPE hybrid composites were compounded by single screw extruder and injection molded into dumbbell specimens. The composites were subjected to thermal gravimetric analysis (TGA), tensile testing, flexural study and water absorption analysis. TGA study confirmed the positive hybrid effects of reinforcements on the thermal stability of LLDPE composites. The decrease in weight loss percentage with the addition of glass fiber authenticated the increase in thermal stability. The maximum tensile strength 20.2 ± 0.8 MPa was obtained with 10% date pit and 20% glass fiber. The water-resistant property of hybrid composites reinforced with high percentage of glass fiber was found to be improved in comparison with virgin. The resulting composites were also exposed to different gamma doses (75 and 150 kGy) and the effect is characterized in terms of thermal and mechanical properties. Irradiation of gamma rays under 75 kGy improved the thermal stability and tensile strength than unirradiated and irradiated samples at higher dose (150 kGy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oksman K (2000) Mechanical properties of natural fibre mat reinforced thermoplastic. Appl Compos Mater 7:403–414. https://doi.org/10.1023/A:1026546426764

    Article  CAS  Google Scholar 

  2. Panthapulakkal S, Sain M (2007) Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—mechanical, water absorption and thermal properties. J Appl Polym Sci 103:2432–2441. https://doi.org/10.1002/app.25486

    Article  CAS  Google Scholar 

  3. Yang R, Li Y, Yu J (2005) Photo-stabilization of linear low density polyethylene by inorganic nano-particles. Polym Degrad Stab 88:168–174. https://doi.org/10.1016/j.polymdegradstab.2003.12.005

    Article  CAS  Google Scholar 

  4. Cantero G, Valea A, Mondragon I et al (2005) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos Part A Appl Sci Manuf 36:1637–1644. https://doi.org/10.1016/j.compositesa.2005.03.021

    Article  CAS  Google Scholar 

  5. Guillermo C, Aitor A, Rodrigo L-P, Inaki M (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254

    Article  Google Scholar 

  6. Karmaker AC, Youngquist JA (1996) Injection molding of polypropylene reinforced with short jute fibers. J Appl Polym Sci 62:1147–1151. https://doi.org/10.1002/(SICI)1097-4628(19961121)62:8%3c1147::AID-APP2%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  7. Road H, Naka H (1993) Mechanical properties of sisal fibre at elevated temperatures 28:6724–6728. https://doi.org/10.1007/BF00356422

    Article  Google Scholar 

  8. Woodhams RT, Thomas G, Rodgers DK (1984) Wood fibers as reinforcing fillers for polyolefins. Polym Eng Sci 24:1166–1171. https://doi.org/10.1002/pen.760241504

    Article  CAS  Google Scholar 

  9. Nitin S, Singh VK (2013) Mechanical behaviour of Walnut reinforced composite. J Mater Environ Sci 4:233–238

    CAS  Google Scholar 

  10. Ghazanfari A, Emami S, Panigrahi S, Tabil LG (2008) Thermal and mechanical properties of blends and composites from HDPE and date pits particles. J Compos Mater 42:77–89. https://doi.org/10.1177/0021998307086212

    Article  CAS  Google Scholar 

  11. Alsewailem FD, Binkhder YA (2010) Preparation and characterization of polymer/date pits composites. J Reinf Plast Compos 29:1743–1749. https://doi.org/10.1177/0731684409337339

    Article  CAS  Google Scholar 

  12. Arora S, Kumar M, Kumar M (2012) Flammability and thermal degradation studies of PVA/rice husk composites. J Reinf Plast Compos 31:85–93. https://doi.org/10.1177/0731684411431765

    Article  CAS  Google Scholar 

  13. Kumar S, Choudhary V, Kumar R (2010) Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix. J Therm Anal Calorim 102:751–761. https://doi.org/10.1007/s10973-010-0799-4

    Article  CAS  Google Scholar 

  14. Shebani AN, Van Reenen AJ, Meincken M (2009) The effect of wood species on the mechanical and thermal properties of wood—LLDPE composites. J Compos Mater 43:1305–1318. https://doi.org/10.1177/0021998308104548

    Article  CAS  Google Scholar 

  15. Hashmi SAR, Kitano T, Chand N (2003) Dynamic mechanical behavior of LLDPE composites reinforced with kevlar fibers/short glass fibers. Polym Compos 24:149–157. https://doi.org/10.1002/pc.10015

    Article  CAS  Google Scholar 

  16. Thwe MM, Liao K (2003) Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Sci Technol 63:375–387. https://doi.org/10.1016/S0266-3538(02)00225-7

    Article  CAS  Google Scholar 

  17. Alsewailem FD, Binkhder YA (2014) Effect of coupling agent on the properties of polymer/date pits composites. J Compos 2014:1–7. https://doi.org/10.1155/2014/412432

    Article  Google Scholar 

  18. Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos Part A Appl Sci Manuf 38:1664–1674. https://doi.org/10.1016/j.compositesa.2007.02.001

    Article  CAS  Google Scholar 

  19. Albano C, Perera R, Silva P, Sánchez Y (2006) Characterization of irradiated PEs/PA6 blends. Polym Bull 57:901–912. https://doi.org/10.1007/s00289-006-0651-y

    Article  CAS  Google Scholar 

  20. Kaci M, Djidjelli H, Boukedami T (2008) Study of the effect of gamma irradiation on the structure and properties of metallocene linear low density polyethylene containing hindered amines. Polym Bull 60:387–395. https://doi.org/10.1007/s00289-007-0850-1

    Article  CAS  Google Scholar 

  21. Abdel Tawab K, Ibrahim SM, Magida MM (2013) The effect of gamma irradiation on mechanical, and thermal properties of recycling polyethylene terephthalate and low density polyethylene (R-PET/LDPE) blend compatibilized by ethylene vinyl acetate (EVA). J Radioanal Nucl Chem 295:1313–1319. https://doi.org/10.1007/s10967-012-2163-6

    Article  CAS  Google Scholar 

  22. Thwe MM, Liao K (2017) Effects of environmental aging on the mechanical properties of bamboo – glass fiber reinforced polymer matrix hybrid composites. Compos Part A: Appl Sci Manuf 33:43–52. https://doi.org/10.1016/S1359-835X(01)00071-9

    Article  Google Scholar 

  23. Banat F, Al-Asheh S, Al-Makhadmeh L (2004) Utilization of raw and activated date pits for the removal of phenol from aqueous solutions. Chem Eng Technol 27:80–86. https://doi.org/10.1002/ceat.200401868

    Article  CAS  Google Scholar 

  24. Hamada JS, Hashim IB, Sharif FA (2002) Preliminary analysis and potential uses of date pits in foods. Food Chem 76:135–137. https://doi.org/10.1016/S0308-8146(01)00253-9

    Article  CAS  Google Scholar 

  25. Yousif OM, Osman MF, Alhadrami GA (1996) Evaluation of dates and date pits as dietary ingredients in tilapia (Oreochromis aureus) diets differing in protein sources. Bioresour Technol 57:81–85. https://doi.org/10.1016/0960-8524(96)00054-5

    Article  CAS  Google Scholar 

  26. Blecker C, Attia H, Drira N-E et al (2003) Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chem 84:577–584. https://doi.org/10.1016/s0308-8146(03)00281-4

    Article  Google Scholar 

  27. Samal SK, Mohanty S, Nayak SK (2009) Polypropylene–bamboo/glass fiber hybrid composites: fabrication and analysis of mechanical, morphological, thermal, and dynamic mechanical behavior. J Reinf Plast Compos 28:2729–2747. https://doi.org/10.1177/0731684408093451

    Article  CAS  Google Scholar 

  28. Prachayawarakorn J, Ruttanabus P, Boonsom P (2011) Effect of cotton fiber contents and lengths on properties of thermoplastic starch composites prepared from rice and waxy rice starches. J Polym Environ 19:274–282. https://doi.org/10.1007/s10924-010-0273-1

    Article  CAS  Google Scholar 

  29. Khan MA, Islam R, Islam T et al (2010) Effect of UV and gamma radiation on the mechanical and degradation properties of LLDPE-clay composites. Adv Mater Res 123–125:415–418. https://doi.org/10.4028/www.scientific.net/amr.123-125.415

    Article  Google Scholar 

  30. Ndiaye D, Tidjani A (2014) Physical changes associated with gamma doses on Wood/ Polypropylene Composites. J Compos Mater 48:3063–3071. https://doi.org/10.1088/1757-899X/62/1/012025

    Article  CAS  Google Scholar 

  31. Jirimali HD, Chaudhari BC, Khanderay JC et al (2018) Waste eggshell-derived calcium oxide and nanohydroxyapatite biomaterials for the preparation of LLDPE polymer nanocomposite and their thermomechanical study. Polym Plast Technol Eng 57:804–811. https://doi.org/10.1080/03602559.2017.1354221

    Article  CAS  Google Scholar 

  32. Krupa I, Luyt AS (2001) Thermal and mechanical properties of LLDPE cross-linked with gamma radiation. Polym Degrad Stab 71:361–366. https://doi.org/10.1016/S0141-3910(00)00186-5

    Article  CAS  Google Scholar 

  33. Jarukumjorn K, Suppakarn N (2009) Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites. Compos Part B Eng 40:623–627. https://doi.org/10.1016/j.compositesb.2009.04.007

    Article  CAS  Google Scholar 

  34. Ferreto HFR, Oliveira ACF, Lima LFCP et al (2012) Thermal, tensile and rheological properties of linear low density polyethylene (LLDPE) irradiated by gamma-ray in different atmospheres. Radiat Phys Chem 81:958–961. https://doi.org/10.1016/j.radphyschem.2012.02.003

    Article  CAS  Google Scholar 

  35. Sterman S, Marsden JG (1966) The effect of silane coupling agents in improving the properties of filled or reinforced thermoplastics. Polym Eng Sci 6:97–112. https://doi.org/10.1002/pen.760060203

    Article  CAS  Google Scholar 

  36. Marcovich NE, Ostrovsky AN, Aranguren MI, Reboredo MM (2000) Woodflour/sisal fibers as hybrid reinforcement of thermoset polymers. In: Third international symposium on natural polymers and composites and the workshop on progress in production and processing of cellulosic fibres and natural polymers 419–421

  37. Albano C, Reyes J, Ichazo M et al (2002) Analysis of the mechanical, thermal and morphological behaviour of polypropylene compounds with sisal fibre and wood flour, irradiated with gamma rays. Polym Degrad Stab 76:191–203. https://doi.org/10.1016/S0141-3910(02)00014-9

    Article  CAS  Google Scholar 

  38. Kumar V, Gulati K, Lal S, Arora S (2020) Effect of gamma irradiation on tensile and thermal properties of poplar wood flour-linear low density polyethylene composites. Radiat Phys Chem 174:108922. https://doi.org/10.1016/j.radphyschem.2020.108922

    Article  CAS  Google Scholar 

  39. Reyes J, Albano C, Davidson E et al (2001) Effects of gamma irradiation on polypropylene, polypropylene + high density polyethylene and polypropylene + high density polyethylene + wood flour. Mater Res Innov 4:294–300. https://doi.org/10.1007/s100190000104

    Article  CAS  Google Scholar 

  40. Rimdusit S, Wongsongyot S, Jittarom S et al (2011) Effects of gamma irradiation with and without compatibilizer on the mechanical properties of polypropylene/wood flour composites. J Polym Res 18:801–809. https://doi.org/10.1007/s10965-010-9477-2

    Article  CAS  Google Scholar 

  41. Buehler FU, Seferis JC (2000) Effect of reinforcement and solvent content on moisture absorption in epoxy composite materials. Compos Part A Appl Sci Manuf 31:741–748. https://doi.org/10.1016/S1359-835X(00)00036-1

    Article  Google Scholar 

  42. Alagar M, Majeed SMA, Selvaganapathi A, Gnanasundaram P (2006) Studies on thermal, thermal ageing and morphological characteristics of EPDM-g-VTES/LLDPE. Eur Polym J 42:336–347. https://doi.org/10.1016/j.eurpolymj.2005.07.013

    Article  CAS  Google Scholar 

  43. da Silva MA, Demori R, Leão RM et al (2019) The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites. Mater Today Commun 18:191–198. https://doi.org/10.1016/j.mtcomm.2018.12.006

    Article  CAS  Google Scholar 

  44. Sánchez Y, Albano C, Karam A et al (2005) Gamma irradiation effects on the grafting of low-density polyethylene with diethyl maleate. Nucl Instrum Meth B 236:343–347. https://doi.org/10.1016/j.nimb.2005.03.274

    Article  CAS  Google Scholar 

  45. Mulla M, Ahmed J, Al-Attar H et al (2017) Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control 73:663–671. https://doi.org/10.1016/j.foodcont.2016.09.018

    Article  CAS  Google Scholar 

  46. Dhoot G, Auras R, Rubino M et al (2009) Determination of eugenol diffusion through LLDPE using FTIR-ATR flow cell and HPLC techniques. Polymer 50:1470–1482. https://doi.org/10.1016/j.polymer.2009.01.026

    Article  CAS  Google Scholar 

  47. Goñi ML, Gañán NA, Strumia MC, Martini RE (2016) Eugenol-loaded LLDPE films with antioxidant activity by supercritical carbon dioxide impregnation. J Supercrit Fluids 111:28–35. https://doi.org/10.1016/j.supflu.2016.01.012

    Article  CAS  Google Scholar 

  48. Ahmad I, Shafiq M, Yasin T (2013) Influence of gamma radiation on compatibilized LLDPE/magnesium hydroxide/sepiolite composites. J Appl Polym Sci 128:2236–2241. https://doi.org/10.1002/app.38293

    Article  CAS  Google Scholar 

  49. Du W, Zhong W, Lin Y et al (2004) Space charge distribution and crystalline structure in polyethylene blended with EVOH. Eur Polym J 40:1987–1995. https://doi.org/10.1016/j.eurpolymj.2004.04.003

    Article  CAS  Google Scholar 

  50. Hao Y, Liu F, Shi H et al (2011) The influence of ultra-fine glass fibers on the mechanical and anticorrosion properties of epoxy coatings. Prog Org Coatings 71:188–197. https://doi.org/10.1016/j.porgcoat.2011.02.012

    Article  CAS  Google Scholar 

  51. S.C. T, (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Reports 53:73–197

    Article  Google Scholar 

  52. López FA, Martín MI, García-Díaz I et al (2012) Recycling of glass fibers from fiberglass polyester waste composite for the Manufacture of glass-ceramic materials. J Environ Prot 3:740–747. https://doi.org/10.4236/jep.2012.38088

    Article  CAS  Google Scholar 

  53. Quaresimin M, Salviato M, Zappalorto M (2012) Fracture and interlaminar properties of clay-modified epoxies and their glass reinforced laminates. Eng Fract Mech 81:80–93. https://doi.org/10.1016/j.engfracmech.2011.10.004

    Article  Google Scholar 

Download references

Acknowledgements

Gratefully acknowledge the University Grant Commission (UGC), New Delhi for the Senior Research Fellowship (SRF), award no. 21/06/2015 (i) EU-V. The author also acknowledges the Chairman, Kurukshetra University Kurukshetra for building a path to get engage in research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv Arora.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human or animal rights

The Research work is not involving any human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulati, K., Lal, S., Kumar, S. et al. Effect of gamma irradiation on thermal, mechanical and water absorption behavior of LLDPE hybrid composites reinforced with date pit (Phoenix dactylifera) and glass fiber. Polym. Bull. 78, 7019–7038 (2021). https://doi.org/10.1007/s00289-020-03477-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03477-w

Keywords

Navigation