Skip to main content

Advertisement

Log in

Electrical and thermal stimuli responsive thermoplastic shape memory polymer composites containing rGO, Fe3O4 and rGO–Fe3O4 fillers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work addresses a facile and broadly applicable method of fabricating a new thermoplastic shape memory polymer (SMP) composite by blending three biopolymers such as polyvinyl alcohol, polyvinyl pyrrolidone and polyethylene glycol. Reduced Graphene (rGO) is used as electrical conductive fillers. Iron Oxide (Fe3O4) and rGO-Fe3O4 combination provides thermo-electric stimulus. Under the thermal stimulus, shape recovery rate of the SMP with hybrid fillers was faster, having quick response time (28 s) compared to electrical stimulus response time (75 s). The conductivity of the SMP matrices increased by 7, 10 and 15 orders of magnitude by incorporating Fe3O4, rGO and rGO- Fe3O4 fillers, respectively. Moreover, the proposed shape memory polymer containing rGO-Fe3O4 filler exhibits a higher Young’s modulus (> 80%) compared to neat polymer (1.75 GPa at room temperature and 0.6 GPa at glass transition temperature, Tg). A maximum stress of 2.5 MPa and 4% recoverable strain was achieved in the SMP with 10 and 15 wt% of hybrid fillers and interestingly no stored strain evolves, upon cooling below Tg. The developed SMP may be applied in morphing wing and other smart actuator applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Luo XF, Mather PT (2010) Conductive shape memory nanocomposites for high speed electrical actuation. Soft Matter 6:2146–2149

    Article  CAS  Google Scholar 

  2. Lu HB, Gou JH, Leng JS, Du SY (2011) Synergistic effect of carbon nanofiber and sub-micro filamentary nickel nanostrand on the shape memory polymer nanocomposite. Smart Mater Struct 20:35017–35023

    Article  CAS  Google Scholar 

  3. Lu HB, Yu K, Liu YJ, Leng JS (2010) Sensing and actuating capabilities of shape memory polymer composite integrated with hybrid filler. Smart Mater Struct 19:65014–65019

    Article  CAS  Google Scholar 

  4. Zenga C, Liu L, Bian W, Liu Y, Leng J (2020) 4D printed electro-induced continuous carbon fiber reinforced shape memory polymer composites with excellent bending resistance. Compos B Eng 194:108034

    Article  CAS  Google Scholar 

  5. Thakur S, Karak N (2013) Bio-based tough hyper branched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Adv 3:9476–9482

    Article  CAS  Google Scholar 

  6. Arun DI, Santhosh Kumar KS, Satheesh Kumar B, Chakravarthy P, Mathew D, Santhosh B (2019) High glass-transition polyurethane-carbon black electro-active shape memory nanocomposite for aerospace systems. Mater Sci Technol 35(5):596–605

    Article  CAS  Google Scholar 

  7. Lu HB, Gou JH, Leng JS, Du SY (2011) Magnetically aligned carbon nanotube in nanopaper enabled shape memory nanocomposite high speed electrical actuation. Appl Phys Lett 98:174105–174107

    Article  CAS  Google Scholar 

  8. Lu HB, Liang F, Gou JH (2011) Nanopaper enabled shape memory nanocomposite with vertically aligned nickel nanostrand: controlled synthesis and electrical actuation. Soft Matter 7:7416–7423

    Article  CAS  Google Scholar 

  9. Sabzi M, Babaahmadi M, Rahnama M (2017) Thermally and electrically triggered triple-shape memory behaviour of poly (vinyl acetate)/poly (lactic acid) due to graphene-induced phase separation. ACS Appl Mater Interfaces 9:24061–24070

    Article  CAS  PubMed  Google Scholar 

  10. Alam J, Alam M, Raja M, Abdul JZ, Dass LA (2014) MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour. Int J Mol Sci 15:19924–19937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sabzi M, Ranjbar-Mohammadi M, Zhang Q, Kargozar S, Leng J, Akhtari T, Abbasi R (2019) Designing triple-shape memory polymers from a miscible polymer pair through dual- electrospinning technique. J Appl Polym Sci 136(15):47471

    Article  CAS  Google Scholar 

  12. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  13. An Y, Okuzaki H (2020) Novel electro-active shape memory polymers for soft actuators. Jpn J Appl Phys 59(6):061002

    Article  CAS  Google Scholar 

  14. Sun YC, Chu M, Huang M, Hegazi O, Naguib HE (2019) Hybrid electroactive shape memory polymer composites with room temperature deformability. Macromol Mater Eng 304:1900196

    Article  CAS  Google Scholar 

  15. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23

    Article  CAS  Google Scholar 

  16. Stuart MA, Hucki WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  PubMed  CAS  Google Scholar 

  17. Hornat CC, Urban MW (2020) Shape memory effects in self-healing polymers. Prog Polym Sci 102:101208

    Article  CAS  Google Scholar 

  18. Meng H, Hu JL (2010) A brief review of stimulus active polymer polymers responsive to thermal, light, magnetic, electric, and water/solvent stimuli. J Intell Mater Syst Struct 21:859–885

    Article  CAS  Google Scholar 

  19. Leng J, Lv H, Liu Y, Du S (2007) Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl Phys Lett 91:144105

    Article  CAS  Google Scholar 

  20. Yu X, Zhou S, Zheng X, Guo T, Xiao Y, Song B (2009) A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity. Nanotechnology 20:235702

    Article  PubMed  CAS  Google Scholar 

  21. Yu X, Zhou S, Zheng X, Xiao Y, Guo T (2009) Influence of in vitro degradation of a biodegradable nanocomposite on its shape memory effect. J Phys Chem C 113:17630–17635

    Article  CAS  Google Scholar 

  22. Zhou J, Li H, Tian R, Dugnani R, Lu H, Chen Y, Guo Y, Duan H, Liu H (2017) Fabricating fast triggered electro-active shape memory graphite/silver nanowires/epoxy resin composite from polymer template. Sci Rep 7:5535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liu X, Li H, Zeng Q, Zhang Y, Kang H, Duan H, Guo Y, Liu H (2015) Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels. J Mater Chem A 3:11641–11649

    Article  CAS  Google Scholar 

  24. Wei K, Zhu G, Tang Y, Li X (2013) Electroactive shape-memory effects of hydro-epoxy/carbon black composites. Polym J 45:671–675

    Article  CAS  Google Scholar 

  25. Lu H, Liu Y, Gou J, Leng J, Du S (2010) Electrical properties and shape-memory behaviour of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer. Smart Mater Struct 19:075021

    Article  CAS  Google Scholar 

  26. Lu H, Gou J (2012) Fabrication and electroactive responsive behaviour of shape–memory nanocomposite incorporated with self-assembled multiwalled carbon nanotube nanopaper. Polym Adv Technol 23(12):1529–1535

    Article  CAS  Google Scholar 

  27. Yang D, Huang W, He X, Xie M (2012) Electromagnetic activation of a shape memory copolymer matrix incorporating ferromagnetic nanoparticles. Polym Int 61:38–42

    Article  CAS  Google Scholar 

  28. Kumar UN, Kratz K, Behl M, Lendlein A (2012) shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments. Express Polym Lett 6:26–40

    Article  CAS  Google Scholar 

  29. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172

    Article  CAS  Google Scholar 

  30. Pham VH, Dang TT, Hur SH, Kim EJ, Chung JS (2012) Highly conductive poly (methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl Mater Interfaces 4:2630–2636

    Article  CAS  PubMed  Google Scholar 

  31. Qi X, Yao X, Deng S, Zhou T, Fu Q (2014) Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. J Mater Chem A 2:2240–2249

    Article  CAS  Google Scholar 

  32. Beloshenko VA, Beygelzimer YE, Borzenko AP, Varyukhin VN (2002) Shape memory effect in the epoxy polymer thermoexpanded graphite system. Composite: Part A 33:1001–1006

    Article  Google Scholar 

  33. Wang W, Liu D, Liu Y, Leng J, Bhattacharyya D (2015) Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites. Compos Sci Technol 106:20–24

    Article  CAS  Google Scholar 

  34. Choi JT, Dao TD, Oh KM, Lee HI, Jeong HM, Kim BK (2012) Shape memory polyurethane nanocomposites with functionalized graphene. Smart Mater Struct 21:075017

    Article  CAS  Google Scholar 

  35. Kim JT, Kim BK, Kim EY, Park HC, Jeong HM (2014) synthesis and shape memory performance of polyurethane/graphene nanocomposites. React Funct Polym 74:16–21

    Article  CAS  Google Scholar 

  36. Chang YW, Lee KS, Lee YW, Bang JH (2015) Poly (ethylene oxide)/graphene oxide nanocomposites: structure, properties and shape memory behaviour. Polym Bull 72:1937–1948

    Article  CAS  Google Scholar 

  37. Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos Sci Technol 72:702–707

    Article  CAS  Google Scholar 

  38. Sengwa RJ, Choudhary S, Sankhla S (2010) Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Compos Sci Technol 70:1621–1627

    Article  CAS  Google Scholar 

  39. Abdel Tawab K, Magida MM, Ibrahim SM (2011) Effect of ionizing radiation on the morphological, thermal and mechanical properties of polyvinyl alcohol/polyethylene glycol blends. J Polym Environ 19:440–446

    Article  CAS  Google Scholar 

  40. Sengwa RJ, Choudhary S (2014) Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J Appl Polym Sci. https://doi.org/10.1002/app.40617

    Article  Google Scholar 

  41. Salvekar AV, Huang WM, Xiao R, Wong YS, Venkatraman SS, Tay KH (2017) Shen ZX (2017) water-responsive shape recovery induced buckling in biodegradable photo-cross-linked poly (ethylene glycol) (peg) hydrogel. Acc Chem Res 50(2):141–150

    Article  CAS  PubMed  Google Scholar 

  42. El Sayed AM, Morsi W (2014) M., α-Fe2O3 / (PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. J Mater Sci 49:5378–5387

    Article  CAS  Google Scholar 

  43. Jr H, William S, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

  44. Lee W, Low H (2016) Geometry-and length scale-dependent deformation and recovery on micro- and nanopatterned shape memory polymer surfaces. Sci Rep 6:23686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu X, Huang W, Lu H, Wang CH (2016) Characterization of polymeric shape memory materials. J Polym Eng 37(1):1–20

    Article  Google Scholar 

  46. Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, Zhang JL (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:9952

    Article  CAS  Google Scholar 

  47. Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Shape memory materials. Mater Today 13:54–61

    Article  CAS  Google Scholar 

  48. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  CAS  Google Scholar 

  49. Salamon J, Sathishkumar Y, Ramachandran K, Lee YS, Yoo DJ, Kim AR, Gnana Kumar G (2015) One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosensors and Bioelectronic 64:269–276

    Article  CAS  Google Scholar 

  50. Masaro L, Zhu XX (1999) Interaction of ethylene glycol with poly (vinyl alcohol) in aqueous systems as studied by NMR spectroscopy. Langmuir 15:8356–8360

    Article  CAS  Google Scholar 

  51. Che CH, Chen Q, Zhong Q (2018) The effects of nanoparticles on morphology and thermal properties of erythritol polyvinyl alcohol phase change composite fibers. ePolymers 18(4):321–329

    CAS  Google Scholar 

  52. Mondal T, Ashka R, Butler P, Bhowmick AK, Krishnamoorti R (2016) Graphene nanocomposites with high molecular weight poly(ε-caprolactone) grafts: controlled synthesis and accelerated crystallization. ACS Macro Lett 5:278–282

    Article  CAS  Google Scholar 

  53. Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58(4):412–417

    Article  CAS  Google Scholar 

  54. Lee S, Hong JY, Jang J (2013) The effect of graphene nanofiller on the crystallization behaviour and mechanical properties of poly (vinyl alcohol). Polym Int 62:901–908

    Article  CAS  Google Scholar 

  55. Müller MT, Krause B, Pötschke P (2012) A successful approach to disperse MWCNTs in polyethylene by melt mixing using polyethylene glycol as additive. Polymer 53(15):3079–3083

    Article  CAS  Google Scholar 

  56. Mansur HS, Orefice RL, Mansur AAP (2004) Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle scattering and FTIR spectroscopy. Polymer 45:7193–7202

    Article  CAS  Google Scholar 

  57. Huang WM, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites a review. J Mater Chem 20:3367–3381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to The Director, CSIR-NAL for his encouragement and support. They also express their gratitude to Mr. M. Mahesh, Mrs. V. Sudha and Dr. A. Vanaja for extending the cooperation in UTM experiments, Electrical response and DSC studies, respectively.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript is written through contributions of all authors. All authors have given approval to the final version of the manuscript. The Funding for this work is supported by the Council of Scientific and Industrial Research, India with Grant no.: ESC-02–12-02 under 12th five year plan.

Corresponding author

Correspondence to S. Raja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7067 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antony, G.J.M., Aruna, S.T., Jarali, C.S. et al. Electrical and thermal stimuli responsive thermoplastic shape memory polymer composites containing rGO, Fe3O4 and rGO–Fe3O4 fillers. Polym. Bull. 78, 6267–6289 (2021). https://doi.org/10.1007/s00289-020-03427-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03427-6

Keywords

Navigation