Skip to main content
Log in

Electro-optical properties of poly(N-vinyl carbazole) nanoclay composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, different weight percentages of nanoclay (NC) (2% and 5%) and N-vinyl carbazole were prepared by chemical polymerization. For investigation of structure, optical and morphologies of samples, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy and scanning electron microscopy were used, respectively. Moreover, dielectric properties of composites were examined using dielectric analysis system and vector network analyzer system at high frequency. It was seen that the values of the real and imaginary dielectric constants and loss factor decrease with doping nanoclay into poly(N-vinyl carbazole) (PNVC). The conductivity properties of all samples were studied, and “s” parameter was calculated. Up to 1.7 GHz, “s” parameter value correlated with Jonscher power law, and between 1.7 GHz and 20 GHz, “s” parameter value correlated with superlinear power law. Also, the atomic polarization behaviors in the high-frequency regions have been obtained for PNVC and PNVC doped with 2%, 5% NCs at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khatoon H, Ahmad S (2017) A review on conducting polymer reinforced polyurethane composites. J Ind Eng Chem 53:1–22

    Article  CAS  Google Scholar 

  2. Sethi D, Ram R, Khastgir D (2017) Electrical conductivity and dynamic mechanical properties of silicon rubber-based conducting composites: effect of cyclic deformation, pressure and temperature. Polym Int 66(9):1295–1305

    Article  CAS  Google Scholar 

  3. Sethi D, Ram R, Khastgir D (2018) Analysis of electrical and dynamic mechanical response of conductive elastomeric composites subjected to cyclic deformations and temperature. Polym Compos 39(11):3912–3923

    Article  CAS  Google Scholar 

  4. Vicentini DS, Barra GM, Bertolino JR, Pires AT (2007) Polyaniline/thermoplastic polyurethane blends: preparation and evaluation of electrical conductivity. Eur Polym J 43(10):4565–4572

    Article  CAS  Google Scholar 

  5. Subramaniam CK, Kaiser AB, Gilberd PW, Liu CJ, Wessling B (1996) Conductivity and thermopower of blends of polyaniline with insulating polymers (PETG and PMMA). Solid State Commun 97(3):235–238

    Article  CAS  Google Scholar 

  6. Ram R, Rahaman M, Khastgir D (2014) Mechanical, electrical, and dielectric properties of polyvinylidene fluoride/short carbon fiber composites with low-electrical percolation threshold. J Appl Polym Sci 131(3):39866

    Article  CAS  Google Scholar 

  7. Ram R, Rahaman M, Aldalbahi A, Khastgir D (2017) Determination of percolation threshold and electrical conductivity of polyvinylidene fluoride (PVDF)/short carbon fiber (SCF) composites: effect of SCF aspect ratio. Polym Int 66(4):573–582

    Article  CAS  Google Scholar 

  8. Snook GA, Bhatt AI, Abdelhamid ME, Best AS (2012) Role of H+ in polypyrrole and poly(3, 4-ethylenedioxythiophene) formation using FeCl3·6H2O in the room temperature ionic liquid, C4mpyrTFSI. Aust J Chem 65(11):1513–1522

    Article  CAS  Google Scholar 

  9. Ram R, Khastgir D, Rahaman M (2018) Physical properties of polyvinylidene fluoride/multi‐walled carbon nanotube nanocomposites with special reference to electromagnetic interference shielding effectiveness. Adv Polym Technol

  10. Ram R, Rahaman M, Khastgir D (2015) Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: modelling of DC conductivity. Compos A Appl Sci Manuf 69:30–39

    Article  CAS  Google Scholar 

  11. Rahman MS, Hammed WA, Ro Y, Ekramul Mahmud HNME (2017) Optoelectrical and photoluminescence quenching properties of poly(N-vinyl carbazole)-polypyrrole/reduced graphene oxide nanocomposites. Synth Met 226:188–194

    Article  CAS  Google Scholar 

  12. Zhong J, Gao S, Xue G, Wang B (2015) Study on enhancement mechanism of conductivity induced by graphene oxide for polypyrrole nanocomposites. Macromolecules 48:1592–1597

    Article  CAS  Google Scholar 

  13. Yoon H (2013) Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3:524–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722

    Article  CAS  Google Scholar 

  15. Yoo D, Kim J, Kim JH (2014) Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate)(PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res 7:717–730

    Article  CAS  Google Scholar 

  16. Ravindranadh K, Rao MC (2013) Physical properties and applications of conducting polymers: an overview. Int J Adv Pahrm Biol Chem 2:190–200

    CAS  Google Scholar 

  17. Grund S, Eichberg J, Asmussen F (1982) A specific embedding resin (PVK) for fine cytological investigations in the photoemission electron microscope. J Ultrastruct Res 80:89–97

    Article  CAS  PubMed  Google Scholar 

  18. Huang CF, Hsieh YA, Hsu SC, Matyjaszewski K (2014) Synthesis of poly(N-vinyl carbazole)-based block copolymers by sequential polymerizations of RAFT-ATRP. Polymer 55:6051–6057

    Article  CAS  Google Scholar 

  19. Grazulevicius JV, Strohriegl P, Pielichowski J, Pielichowski K (2003) Carbazole-containing polymers: synthesis, properties and applications. Prog Polym Sci 28:1297–1353

    Article  CAS  Google Scholar 

  20. Petukhova A, Greener J, Liu K, Nykypanchuk D, Nicolay R, Matyjaszewski K, Kumacheva E (2012) Standing arrays of gold nanorods end-tethered with polymer ligands. Small 8:731–737

    Article  CAS  PubMed  Google Scholar 

  21. Block H, Bowker SM, Walker SM (1978) Photoconductivities of poly(N-vinyl carbazoles) containing cation radicals. Polymer 19:531–536

    Article  CAS  Google Scholar 

  22. Penwell RC, Prest WM Jr (1978) Orientation in poly(n-vinyl carbazole) by melt extrusion. Polymer 19:537–541

    Article  CAS  Google Scholar 

  23. Ahlatcioǧlu E, Şenkal BF, Okutan M (2015) Preparation and electrical characterization of poly(aniline) nano clay composites. High Temp Mater Process (London) 34:341–346

    Google Scholar 

  24. Aal NA, Al-Hazmi F, Al-Ghamdi AA, Al-Ghamdi AA, El-Tantawy F, Yakuphanoglu F (2015) A novel facile synthesis and electromagnetic wave shielding effectiveness at microwave frequency of graphene oxide paper. Microsyst Technol 21(10):2155–2163

    Article  CAS  Google Scholar 

  25. Basavaraja C, Thinh PX, Huh DS (2013) Characterization and electrical behavior of biodegradable poly(n-vinylcarbazole)/poly(3-hydroxybutyric acid) composite films. Macromol Res 21:574–581

    Article  CAS  Google Scholar 

  26. Mansour N, Momeni A, Karimzadeh R, Amini M (2012) Blue-green luminescent silicon nanocrystals fabricated by nanosecond pulsed laser ablation in dimethyl sulfoxide. Opt Mater Express 2:740–748

    Article  CAS  Google Scholar 

  27. Lin SW, Chen DH (2009) Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation. Small 5:72–76

    Article  CAS  PubMed  Google Scholar 

  28. Boddula R, Srinivasan P (2014) Benzoyl peroxide oxidation route to the synthesis of solvent soluble polycarbazole. Int Sch Res Not 2014:1–9

    Article  Google Scholar 

  29. Azzam EMS, Sayyah SM, Taha AS (2013) Fabrication and characterization of nanoclay composites using synthesized polymeric thiol surfactants assembled on gold nanoparticles. Egypt J Petrol 22(4):493–499

    Article  Google Scholar 

  30. Yakuphanoglu F, Al-Ghamdi AA, El-Tantawy F (2015) Electromagnetic interference shielding properties of nanocomposites for commercial electronic devices. Microsyst Technol 21(11):2397–2405

    Article  CAS  Google Scholar 

  31. Korkmaz B, Özerol EA, Bozdoğan AÇ, Okutan M, Şenkal BF, Gursel YH (2017) Synthesis and characterization of a new hydrogen bonded side chain liquid crystal block copolymer and investigation of electrical properties. Pure Appl Chem 89(1):19–28

    Article  CAS  Google Scholar 

  32. Ahlatcıoğlu E, Gursel Y, Okutan M, Senkal BF (2014) Preparation of poly (N-vinylcarbazole)-co-poly (2-(dimethylamino) ethyl methacrylate) based hydrogen bonded side-chain liquid crystal copolymer. Mater Sci Semicond Process 28:144–150

    Article  CAS  Google Scholar 

  33. Jonscher AK (1978) The universal dielectric response: a review of data their new interpretation. Chelsea Dielectrics Group, London

    Google Scholar 

  34. Ahlatcıoğlu Özerol E, Şenkal BF, Okutan M (2015) Preparation and characterization of graphite composites of polyaniline. Microelectron Eng 146:76–80

    Article  CAS  Google Scholar 

  35. Meller A (1983) Gmelin Handbuch der Anorganische Chemie, Boron compounds, 2nd edn. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esma Ahlatcıoğlu Özerol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlatcıoğlu Özerol, E. Electro-optical properties of poly(N-vinyl carbazole) nanoclay composites. Polym. Bull. 76, 5301–5311 (2019). https://doi.org/10.1007/s00289-018-2654-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2654-x

Keywords

Navigation