Skip to main content
Log in

Linear and nonlinear melt viscoelastic properties of fibrillated blend fiber based on polypropylene/polytrimethylene terephthalate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work was aimed at understanding the influence of fibrillar morphology on melt viscoelastic properties of polymer blends containing various blend ratios (polypropylene/polytrimethylene terephthalate: 99/1, 94/6, 90/10, 80/20). The blends were processed on co-rotating twin-screw extruder, and fiber spinning was employed as a post-processing method. Scanning electron microscopy was used to analyze the interior morphology of the as-extruded samples and fibers, and it was revealed that droplet and fibrillar morphologies are the formed morphologies in as-extruded and fiber samples, respectively. To appraise the melt viscoelastic responses of samples, rheological measurements were conducted in both linear and nonlinear regions. Formed physical fibrillar network caused the storage modulus and complex viscosity to appear as a secondary plateau along with intensified values in low-frequency region compared with the as-extruded blend samples. Moreover, the fibrillar structure increased the elasticity of the fibers whose effect was monitored by increased values of transient stress responses and creep-recovery experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Friedrich K, Fakirov S, Zhang Z (2005) Polymer composites. Springer, Boston

    Book  Google Scholar 

  2. Cassagnau P, Michel A (2001) New morphologies in immiscible polymer blends generated by a dynamic quenching process. Polymer 42(7):3139–3152. https://doi.org/10.1016/S0032-3861(00)00602-9

    Article  CAS  Google Scholar 

  3. Utracki LA, Shi ZH (1992) Development of polymer blend morphology during compounding in a twin-screw extruder. Part I: droplet dispersion and coalescence—a review. Polym Eng Sci 32(24):1824–1833. https://doi.org/10.1002/pen.760322405

    Article  CAS  Google Scholar 

  4. Shen J, Wang M, Li J et al (2011) In situ fibrillation of polyamide 6 in isotactic polypropylene occurring in the laminating-multiplying die. Polym Adv Technol 22(2):237–245. https://doi.org/10.1002/pat.1525

    Article  CAS  Google Scholar 

  5. Hong JS, Kim JL, Ahn KH et al (2005) Morphology development of PBT/PE blends during extrusion and its reflection on the rheological properties. J Appl Polym Sci 97(4):1702–1709. https://doi.org/10.1002/app.21695

    Article  CAS  Google Scholar 

  6. Bhattacharyya D, Fakirov S (eds) (2012) Synthetic polymer-polymer composites. Hanser, München

    Google Scholar 

  7. Fakirov S (2013) Nano-/microfibrillar polymer–polymer and single polymer composites: the converting instead of adding concept. Compos Sci Technol 89:211–225. https://doi.org/10.1016/j.compscitech.2013.10.007

    Article  CAS  Google Scholar 

  8. Friedrich K (2005) Microfibrillar reinforced composites from PET/PP blends: processing, morphology and mechanical properties. Compos Sci Technol 65(1):107–116. https://doi.org/10.1016/j.compscitech.2004.06.008

    Article  CAS  Google Scholar 

  9. Marcinčin A, Körmendy E, Hricová M et al (2006) Rheological behavior of polyester blend and mechanical properties of the polypropylene–polyester blend fibers. J Appl Polym Sci 102(5):4222–4227. https://doi.org/10.1002/app.24682

    Article  CAS  Google Scholar 

  10. Shields RJ, Bhattacharyya D, Fakirov S (2007) Microfibril-reinforced composites from PE/PET blends: effect of reinforcement size on oxygen permeability. KEM 334–335:249–252. https://doi.org/10.4028/www.scientific.net/KEM.334-335.249

    Article  Google Scholar 

  11. Lee SY, Kim SC (1997) Laminar morphology development and oxygen permeability of LDPE/EVOH blends. Polym Eng Sci 37(2):463–475. https://doi.org/10.1002/pen.11690

    Article  CAS  Google Scholar 

  12. Monticciolo A, Cassagnau P, Michel A (1998) Fibrillar morphology development of PE/PBT blends: rheology and solvent permeability. Polym Eng Sci 38(11):1882–1889. https://doi.org/10.1002/pen.10358

    Article  CAS  Google Scholar 

  13. Fakirov S, Kamo H, Evstatiev M et al (2004) Microfibrillar reinforced composites from PET/LDPE blends: morphology and mechanical properties. J Macromol Sci Part B 43(4):775–789. https://doi.org/10.1081/MB-120030024

    Article  CAS  Google Scholar 

  14. Marcinčin A, Hricová M, Aneja A et al (2006) Polypropylene/poly (trimethylene terephthalate)–blend fibers. J Macromol Sci Part B 45(5):945–956. https://doi.org/10.1080/00222340600796223

    Article  CAS  Google Scholar 

  15. Habibolah Zargar MR, Shoushtari AM (2019) Fabrication of polypropylene/poly (trimethylene terephthalate) blend fibers with highly improved resiliency and preserved mechanical properties. J Macromol Sci Part B 58(1):141–160. https://doi.org/10.1080/00222348.2018.1558576

    Article  CAS  Google Scholar 

  16. Jayanarayanan K, Thomas S, Joseph K (2008) Morphology, static and dynamic mechanical properties of in situ microfibrillar composites based on polypropylene/poly (ethylene terephthalate) blends. Compos A Appl Sci Manuf 39(2):164–175. https://doi.org/10.1016/j.compositesa.2007.11.008

    Article  CAS  Google Scholar 

  17. Jayanarayanan K, Ravichandran A, Rajendran D et al (2010) Morphology and mechanical properties of normal blends and in-situ microfibrillar composites from low-density polyethylene and poly(ethylene terephthalate). Polym Plast Technol Eng 49(5):442–448. https://doi.org/10.1080/03602550903414043

    Article  CAS  Google Scholar 

  18. Jayanarayanan K, Thomas S, Joseph K (2009) Dynamic mechanical analysis of in situ microfibrillar composites based on PP and PET. Polym Plast Technol Eng 48(4):455–463. https://doi.org/10.1080/03602550902727874

    Article  CAS  Google Scholar 

  19. Jayanarayanan K, Thomas S, Joseph K (2011) In situ microfibrillar blends and composites of polypropylene and poly (ethylene terephthalate): morphology and thermal properties. J Polym Res 18(1):1–11. https://doi.org/10.1007/s10965-009-9384-6

    Article  CAS  Google Scholar 

  20. Jayanarayanan K, Thomas S, Joseph K (2012) Effect of blend ratio on the mechanical and sorption behaviour of polymer–polymer microfibrillar composites from low-density polyethylene and polyethylene terephthalate. J Reinf Plast Compos 31(8):549–562. https://doi.org/10.1177/0731684412440602

    Article  CAS  Google Scholar 

  21. Jayanarayanan K, Thomas S, Joseph K (2016) Effect of blend ratio on the dynamic mechanical and thermal degradation behavior of polymer–polymer composites from low density polyethylene and polyethylene terephthalate. Iran Polym J 25(4):373–384. https://doi.org/10.1007/s13726-016-0429-5

    Article  CAS  Google Scholar 

  22. Rizvi A, Andalib ZKM, Park CB (2017) Fiber-spun polypropylene/polyethylene terephthalate microfibrillar composites with enhanced tensile and rheological properties and foaming ability. Polymer 110:139–148. https://doi.org/10.1016/j.polymer.2016.12.054

    Article  CAS  Google Scholar 

  23. Rizvi A, Park CB, Favis BD (2015) Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils. Polymer 68:83–91. https://doi.org/10.1016/j.polymer.2015.04.081

    Article  CAS  Google Scholar 

  24. Kakroodi AR, Kazemi Y, Ding W et al (2015) Poly(lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability. Biomacromolecules 16(12):3925–3935. https://doi.org/10.1021/acs.biomac.5b01253

    Article  CAS  PubMed  Google Scholar 

  25. Hajiraissi R, Jahani Y, Hallmann T (2018) Investigation of rheology and morphology to follow physical fibrillar network evolution through fiber spinning of PP/PA6 blend fiber. Polym Eng Sci 58(8):1251–1260. https://doi.org/10.1002/pen.24686

    Article  CAS  Google Scholar 

  26. Huang Y, He Y, Ding W et al (2017) Improved viscoelastic, thermal, and mechanical properties of in situ microfibrillar polypropylene/polyamide 6,6 composites via direct extrusion using a triple-screw extruder. RSC Adv 7(9):5030–5038. https://doi.org/10.1039/C6RA26734C

    Article  CAS  Google Scholar 

  27. Huang Y, He Y, Wang Y et al (2018) Studying the formation mechanism of in situ poly(butylene terephthalate) microfibrils prepared by one-step direct extrusion via orthogonal experimental design. Polym Eng Sci 58(7):1166–1173. https://doi.org/10.1002/pen.24678

    Article  CAS  Google Scholar 

  28. Li X, Xin C, Huang Y et al (2018) Effect of dispersed phase on the morphology of in situ microfibrils and the viscoelastic properties of its composite via direct extrusion. J Appl Polym Sci 135(21):46286. https://doi.org/10.1002/app.46286

    Article  CAS  Google Scholar 

  29. Rizvi A, Tabatabaei A, Barzegari MR et al (2013) In situ fibrillation of CO2-philic polymers: sustainable route to polymer foams in a continuous process. Polymer 54(17):4645–4652. https://doi.org/10.1016/j.polymer.2013.06.023

    Article  CAS  Google Scholar 

  30. Xing Q, Zhu M, Wang Y et al (2005) In situ gradient nano-scale fibril formation during polypropylene (PP)/polystyrene (PS) composite fine fiber processing. Polymer 46(14):5406–5416. https://doi.org/10.1016/j.polymer.2005.03.100

    Article  CAS  Google Scholar 

  31. Rizvi A, Park CB (2014) Dispersed polypropylene fibrils improve the foaming ability of a polyethylene matrix. Polymer 55(16):4199–4205. https://doi.org/10.1016/j.polymer.2014.06.014

    Article  CAS  Google Scholar 

  32. Hajiraissi R, Jahani Y (2018) Non-terminal behavior as a finger print to follow droplet deformation. Adv Polym Technol 37(5):1517–1525. https://doi.org/10.1002/adv.21810

    Article  CAS  Google Scholar 

  33. Jurczuk K, Galeski A, Piorkowska E (2014) Strain hardening of molten thermoplastic polymers reinforced with poly(tetrafluoroethylene) nanofibers. J Rheol 58(3):589–605. https://doi.org/10.1122/1.4867389

    Article  CAS  Google Scholar 

  34. Seemork J, Sako T, Bin Md Ali MA et al (2017) Rheological response under nonisothermal stretching for immiscible blends of isotactic polypropylene and acrylate polymer. J Rheol 61(1):1–11. https://doi.org/10.1122/1.4965843

    Article  CAS  Google Scholar 

  35. Yamaguchi M, Fukuda K, Yokohara T et al (2012) Modification of rheological properties under elongational flow by addition of polymeric fine fibers. Macromol Mater Eng 297(7):654–658. https://doi.org/10.1002/mame.201100270

    Article  CAS  Google Scholar 

  36. Yokohara T, Nobukawa S, Yamaguchi M (2011) Rheological properties of polymer composites with flexible fine fibers. J Rheol 55(6):1205–1218. https://doi.org/10.1122/1.3626414

    Article  CAS  Google Scholar 

  37. Hong JS, Ahn KH, Lee SJ (2005) Strain hardening behavior of polymer blends with fibril morphology. Rheol Acta 45(2):202–208. https://doi.org/10.1007/s00397-005-0015-9

    Article  CAS  Google Scholar 

  38. Yamaguchi M, Yokohara T, Bin Md Ali MA (2013) Effect of flexible fibers on rheological properties of poly(lactic acid) composites under elongational flow. Nihon Reoroji Gakkaishi 41(3):129–135. https://doi.org/10.1678/rheology.41.129

    Article  CAS  Google Scholar 

  39. Fakirov S, Bhattacharyya D, Lin RJT et al (2007) Contribution of coalescence to microfibril formation in polymer blends during cold drawing. J Macromol Sci Part B 46(1):183–194. https://doi.org/10.1080/00222340601044375

    Article  CAS  Google Scholar 

  40. Folkes MJ, Hope PS (1993) Polymer blends and alloys. Springer, Dordrecht

    Book  Google Scholar 

  41. Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc A Math Phys Eng Sci 138(834):41–48. https://doi.org/10.1098/rspa.1932.0169

    Article  CAS  Google Scholar 

  42. Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc A Math Phys Eng Sci 146(858):501–523. https://doi.org/10.1098/rspa.1934.0169

    Article  CAS  Google Scholar 

  43. Graebling D, Muller R (1990) Rheological behavior of polydimethylsiloxane/polyoxyethylene blends in the melt. Emulsion model of two viscoelastic liquids. J Rheol 34(2):193–205. https://doi.org/10.1122/1.550123

    Article  Google Scholar 

  44. Supaphol P, Dangseeyun N, Thanomkiat P et al (2004) Thermal, crystallization, mechanical, and rheological characteristics of poly(trimethylene terephthalate)/poly(ethylene terephthalate) blends. J Polym Sci B Polym Phys 42(4):676–686. https://doi.org/10.1002/polb.10767

    Article  CAS  Google Scholar 

  45. Khonakdar HA, Saen P, Nodehi A et al (2013) On rheology-morphology correlation of polypropylene/poly(trimethylene terephthalate) blend nanocomposites. J Appl Polym Sci 127(2):1054–1060. https://doi.org/10.1002/APP.37776

    Article  CAS  Google Scholar 

  46. Dangseeyun N, Supaphol P, Nithitanakul M (2004) Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym Test 23(2):187–194. https://doi.org/10.1016/S0142-9418(03)00079-5

    Article  CAS  Google Scholar 

  47. Utracki LA (1991) On the viscosity-concentration dependence of immiscible polymer blends. J Rheol 35(8):1615–1637. https://doi.org/10.1122/1.550248

    Article  CAS  Google Scholar 

  48. Grizzuti N, Buonocore G, Iorio G (2000) Viscous behavior and mixing rules for an immiscible model polymer blend. J Rheol 44(1):149–164. https://doi.org/10.1122/1.551073

    Article  CAS  Google Scholar 

  49. Utracki LA, Kanial MR (1982) Melt rheology of polymer blends. Polym Eng Sci 22(2):96–114. https://doi.org/10.1002/pen.760220211

    Article  Google Scholar 

  50. Xu H-S, Li Z-M, Pan J-L et al (2004) Morphology and rheological behaviors of polycarbonate/high density polyethylene in situ microfibrillar blends. Macromol Mater Eng 289(12):1087–1095. https://doi.org/10.1002/mame.200400197

    Article  CAS  Google Scholar 

  51. Wu D, Zhang Y, Wu L et al (2008) Viscoelastic properties of polyarylene ether nitriles/thermotropic liquid crystalline polymer blend. J Appl Polym Sci 108(3):1934–1941. https://doi.org/10.1002/app.27837

    Article  CAS  Google Scholar 

  52. Rayleigh L (1878) On the instability of jets. Proc Lond Math Soc s1-10(1):4–13. https://doi.org/10.1112/plms/s1-10.1.4

    Article  Google Scholar 

  53. Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc Lond 29(196–199):71–97. https://doi.org/10.1098/rspl.1879.0015

    Article  Google Scholar 

  54. Tomotika S (1935) On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc R Soc A Math Phys Eng Sci 150(870):322–337. https://doi.org/10.1098/rspa.1935.0104

    Article  Google Scholar 

  55. Tomotika S (1936) Breaking up of a drop of viscous liquid immersed in another viscous fluid which is extending at a uniform rate. Proc R Soc A Math Phys Eng Sci 153(879):302–318. https://doi.org/10.1098/rspa.1936.0003

    Article  Google Scholar 

  56. Wu D, Wu L, Wang J et al (2011) Effect of epoxy resin on the thermal behaviors and viscoelastic properties of poly(phenylene sulfide). Mater Chem Phys 128(1–2):274–282. https://doi.org/10.1016/j.matchemphys.2011.03.015

    Article  CAS  Google Scholar 

  57. Islam MT (2006) Prediction of multiple overshoots in shear stress during fast flows of bidisperse polymer melts. Rheol Acta 45(6):1003–1009. https://doi.org/10.1007/s00397-005-0060-4

    Article  CAS  Google Scholar 

  58. Islam MT, Archer LA (2001) Nonlinear rheology of highly entangled polymer solutions in start-up and steady shear flow. J Polym Sci B Polym Phys 39(19):2275–2289. https://doi.org/10.1002/polb.1201

    Article  CAS  Google Scholar 

  59. Macabas PHP, Demarquette NR, Dealy JM (2005) Nonlinear viscoelasticity of PP/PS/SEBS blends. Rheol Acta 44(3):295–312. https://doi.org/10.1007/s00397-004-0411-6

    Article  CAS  Google Scholar 

  60. Sundararaj U, Macosko CW (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28(8):2647–2657. https://doi.org/10.1021/ma00112a009

    Article  CAS  Google Scholar 

  61. Migler KB (2001) String formation in sheared polymer blends: coalescence, breakup, and finite size effects. Phys Rev Lett 86(6):1023–1026. https://doi.org/10.1103/PhysRevLett.86.1023

    Article  CAS  PubMed  Google Scholar 

  62. Jansseune T, Moldenaers P, Mewis J (2004) Stress relaxation after steady shear flow in immiscible model polymer blends. Rheol Acta 43(6):592–601. https://doi.org/10.1007/s00397-003-0351-6

    Article  CAS  Google Scholar 

  63. Chen Q, Yu W, Zhou C (2008) Transient stresses and morphology of immiscible polymer blends under varying shear flow. Colloids Surf A 326(3):175–183. https://doi.org/10.1016/j.colsurfa.2008.05.039

    Article  CAS  Google Scholar 

  64. Shaayegan V (2010) Linear viscoelastic behaviour and relaxation phenomena of immiscible blends: the application of creep. Master thesis, Concordia University

Download references

Acknowledgements

The author thanks Prof. Dr. J. Schmidt and Yusra Hambal for rheological facilities. Also supplying PP and PTT by UNIPETROL (Mr. Martin Malíček) and RTP DEUTSCHLAND GmbH (Mr. Waldemar Müller) is gratefully appreciated. Author also thanks Nadine Buitkamp for SEM measurements. Mr. Fabrizio Ranieri and Ms. Liliana Orban are appreciated for giving the opportunity to work with the LME (Dynisco Co., Heilbronn, BW, Germany).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Hajiraissi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiraissi, R. Linear and nonlinear melt viscoelastic properties of fibrillated blend fiber based on polypropylene/polytrimethylene terephthalate. Polym. Bull. 77, 2423–2442 (2020). https://doi.org/10.1007/s00289-019-02865-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02865-1

Keywords

Navigation