Skip to main content
Log in

Strain hardening behavior of polymer blends with fibril morphology

  • Original contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We investigate the rheological behavior of the polymer blends with fibril morphology, with special focus on the effect of fibril morphology on the extensional properties under uniaxial extension. We add a small amount of the dispersed phase to the matrix, and control the blend morphology by changing the viscosity ratio. When the fibril morphology is maintained, the blend shows not only a significant increase of the extensional viscosity but the strain hardening behavior. The extensional viscosity increases depending on the aspect ratio of the fibers, while the strain hardening behavior originates from the restricted stretching of deformable fibers, which has been confirmed theoretically by introducing the concept of rigidity of the fiber. It suggests a way to induce the strain hardening behavior by introducing deformable fibrils into the matrix, that is, by the design of polymer blends with a small amount of dispersed phase such that the fibril structure is maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Batchelor GK (1971) The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J Fluid Mech 46(4):813

    Article  Google Scholar 

  • Blizard KG, Baird DG (1987) The morphology and rheology of polymer blends containing a liquid crystalline copolyester. Poly Eng Sci 27(9):653

    Article  CAS  Google Scholar 

  • Cassagnau P, Michel A (2001) New morphologies in immiscible polymer blends generated by a dynamic quenching process. Polymer 42:3139

    Article  CAS  Google Scholar 

  • Champagne MF, Dumoulin MM, Utracki LA, Szabo JP (1996) Generation of fibrillar morphology in blends of block copolyetheresteramide and liquid crystal polyester. Poly Eng Sci 36(12):1636

    Article  CAS  Google Scholar 

  • Chan Y, White JL, Oyanagi Y (1978) A fundamental study of the rheological properties of glass-fiber-reinforced polyethylene and polystyrene melts. J Rheol 22(5):507

    Article  CAS  Google Scholar 

  • Covas JA, Carneiro OS, Maia JM (2001) Monitoring the evolution of morphology of polymer blends upon manufacturing of microfibrillar reinforced composites. Intern J Polymeric Mater 50:445

    Article  CAS  Google Scholar 

  • Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing. Van Nostrand Reinhold, New York

    Google Scholar 

  • Dinh SM, Armstrong RC (1984) A rheological equation of state for semiconcentrated fiber suspensions. J Rheol 28(3):207

    Article  CAS  Google Scholar 

  • Han CD (1981) Multiphase flow in polymer processing. Academic Press, New York

    Google Scholar 

  • Inkson NJ, McLeish TCB, Harlen OG, Groves DJ (1999) Predicting low density polyethylene melt rheology in elongational and shear flow with “pom-pom” constitutive equation. J Rheol 43(4):873

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Li JX, Wu J, Chan CM (2000) Thermoplastic nanocomposites. Polymer (41):6935

  • Mewis J, Metzner AB (1974) The rheological properties of suspensions of fibres in Newtonian fluids subjected to extensional deformations. J Fluid Mech62(3):593

    Article  Google Scholar 

  • Min K, White JL, Fellers JF (1984) Development of phase morphology in incompressible polymer blends during mixing and its variation in extrusion. Poly Eng Sci 24(17): 1327

    Article  CAS  Google Scholar 

  • Ooi YW, Sridhar T (2004) Resistance to uniaxial extensional flow of fibre suspensions. Rheol Acta 43:223

    Article  CAS  Google Scholar 

  • Rumscheidt FD, Mason SG (1961) Particle motions in sheared suspensions XI. Internal circulation in fluid droplets (experimental). J Colloid Sci 16(3):210

    Article  CAS  Google Scholar 

  • Sperling LH (1997) Polymeric multicomponent materials : an introduction. Wiley, New York

    Google Scholar 

  • Sundararaj U, Macosko CW (1992) Morphology development in polymer blends. Poly Eng Sci 32(24):1814

    Article  CAS  Google Scholar 

  • Tsebrenko MV, Yudin AV, Ablazova TI, Vinogradov GV (1976) Mechanism of fibrillation in the flow of molten polymer mixtures. Polymer 17(9):831

    Article  CAS  Google Scholar 

  • Utracki LA (1990) Polymer alloys and blends. Hanser, New York

    Google Scholar 

  • Vinogradov GV, Yarlykov BV, Tsebrenko MV, Yudin AV, Ablazova TI (1975) Fibrillation in the flow of polyoxymethylene melts. Polymer 16(8):609

    Article  CAS  Google Scholar 

  • Yamamoto S, Matsuoka T (1995) Dynamic simulation of fiber suspensions in shear flow. J Chem Phys 102(5):2251

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Korean Science and Engineering Foundation (KOSEF) for the financial support through the Applied Rheology Center, an official engineering research center (ERC) in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hyun Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J.S., Ahn, K.H. & Lee, S.J. Strain hardening behavior of polymer blends with fibril morphology. Rheol Acta 45, 202–208 (2005). https://doi.org/10.1007/s00397-005-0015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-005-0015-9

Keywords

Navigation