Skip to main content
Log in

Comparative study of Fourier transform infrared spectroscopy (FTIR) analysis of natural fibres treated with chemical, physical and biological methods

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Kenaf and luffa fibres are hydrophilic due to the presence of water sensitive constituents, which tend to form a poor compatibility when binding with polymers. Thus, the surface of fibres was modified through fungal, alkaline and heat treatment to reduce the main hydroxyl functional groups (O–H) that caused the water absorption as well as to cleave the formed hydrogen bonds that hindered the compatibility. The samples were treated with Phanerochaete Chrysosporium (PC) and Fusarium Oxysporum fungi separately for 5, 10 and 15 days. Furthermore, the samples were alkaline treated with 5 wt% of sodium hydroxide at increased temperature of 25 °C, 50 °C, 70 °C and 90 °C, where it showed improvement in the hydrogen bond removal rate. Moreover, the samples that heat treated under higher temperatures of 120 °C, 140 °C, 160 °C and 180 °C were found to have the lower cellulose and hemicellulose contents due the evaporation of water molecules. Generally, through Fourier transform infrared spectroscopy analysis, both the fibres treated with PC fungi had the lowest O–H content due to the detection of the largest reduction of the O–H stretching band intensity compared to others. Furthermore, the highest weight loss and the lowest water absorption percentages were also detected from these fibres, which also indicated the good modification between the fibres and the PC fungi. Therefore, the fungal treatment using PC fungi is the most effective and environmentally friendly method to improve the fibres’ hydrophobic property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Islam MS, Hasan M, Ahmad MB (2014) Chemical modification and properties of cellulose‐based polymer composites. In: Thakur VK (ed) Lignocellulosic polymer composites: processing, characterization, and properties, 1st edn. Wiley, New York, pp 301–324. https://doi.org/10.1002/9781118773949.ch14

    Google Scholar 

  2. Yilmaz ND (2015) Agro‐residual fibers as potential reinforcement elements for biocomposites. In: Thakur VK (ed) Lignocellulosic polymer composites: processing, characterization, and properties, 1st edn. Wiley, New York, pp 231–270. https://doi.org/10.1002/9781118773949.ch11

    Google Scholar 

  3. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207. https://doi.org/10.1002/pc.20461

    Article  CAS  Google Scholar 

  4. Mitra BC (2014) Environment friendly composite materials: biocomposites and green composites. Def Sci J 64:244–261. https://doi.org/10.14429/dsj.64.7323

    Article  CAS  Google Scholar 

  5. Kalia S, Thakur K, Celli A, Kiechel MA, Schauer CL (2013) Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J Environ Chem Eng 1:97–112. https://doi.org/10.1016/j.jece.2013.04.009

    Article  CAS  Google Scholar 

  6. Solikhin A, Hadi YS, Massijaya MY, Nikmatin S (2016) Basic Properties of oven–heat treated oil palm empty fruit bunch stalk fibers. BioResources 11:2224–2237. https://doi.org/10.15376/biores.11.1.2224-2237

    Article  CAS  Google Scholar 

  7. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5:578–595. https://doi.org/10.7150/ijbs.5.578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiros C, Topakas E, Katapodis P, Christakopoulos P (2008) Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind Crops Prod 28:213–224. https://doi.org/10.1016/j.indcrop.2008.02.004

    Article  CAS  Google Scholar 

  9. Esteves B, Pereira H (2008) Wood modification by heat treatment: a review. BioResources 4:370–404. https://doi.org/10.15376/biores.1.1.1-2

    Article  Google Scholar 

  10. Kaboorani A (2009) Thermal properties of composites made of heat-treated wood and polypropylene. J Compos Mater 43:2599–2607. https://doi.org/10.1177/0021998309345291

    Article  CAS  Google Scholar 

  11. ASTM E168-16 (2016) Standard practices for general techniques of infrared quantitative analysis. ASTM International, West Conshohocken. https://doi.org/10.1520/E0168-16

  12. ASTM E1252-98 (2013) Standard practice for general techniques for obtaining infrared spectra for qualitative analysis. ASTM International, West Conshohocken. https://doi.org/10.1520/E1252-98

  13. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. https://doi.org/10.1007/s10570-007-9145-9

    Article  CAS  Google Scholar 

  14. El Mansouri N-E, Salvadó J (2007) Analytical methods for determining functional groups in various technical lignins. Ind Crops Prod 26:116–124. https://doi.org/10.1016/j.indcrop.2007.02.006

    Article  CAS  Google Scholar 

  15. Sun S, Yuan T, Li M, Cao X, Xu F, Liu Q (2012) Structural characterization of hemicelluloses from bamboo culms (Neosinocalamus Affinis). Cell Chem Technol 46:165–176. http://www.cellulosechemtechnol.ro/pdf/CCT3-4(2012)/p.165-176.pdf

  16. Heredia-Guerrero JA, Benítez JJ, Domínguez E, Bayer IS, Cingolani R, Athanassiou A, Heredia A (2014) Infrared and Raman spectroscopic features of plant cuticles: a review. Front Plant Sci 5:305. https://doi.org/10.3389/fpls.2014.00305

    Article  PubMed  PubMed Central  Google Scholar 

  17. Peng F, Bian J, Peng P, Guan Y, Xu F, Sun R-C (2012) Fractional separation and structural features of hemicelluloses from sweet sorghum leaves. BIORESOURCES 7:4744–4759. https://doi.org/10.15376/biores.7.4.4744-4759

    Article  Google Scholar 

  18. Bykov I (2008) Characterization of natural and technical lignins using FTIR spectroscopy. Yüksek Lisans Tezi, Lulea University of Technology, Department of Chemical Engineering and Geosciences, Lulea. http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1016107&dswid=5541

  19. Ismail NSM, Ramli N, Hani NM, Meon Z (2012) Extraction and characterization of pectin from dragon fruit (Hycolereus polyrhizus) using various extraction conditions. Sains Malays 41:41–45. http://journalarticle.ukm.my/3228/1/05_Norazelina.pdf

  20. Kolattukudy PE (2005) Cutin from plants. Biopolymers online. https://doi.org/10.1002/3527600035.bpol3a01

  21. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  22. Santos JI, Martín-Sampedro R, Fillat U, Oliva JM, Negro MJ, Ballesteros M, Eugenio ME, Ibarra D (2015) Evaluating lignin-rich residues from biochemical ethanol production of wheat straw and olive tree pruning by FTIR and 2D-NMR. Int J Polym Sci 2015:1–11. https://doi.org/10.1155/2015/314891

    Article  CAS  Google Scholar 

  23. Szymanska-Chargot M, Zdunek A (2013) Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys 8:29–42. https://doi.org/10.1007/s11483-012-9279-7

    Article  PubMed  Google Scholar 

  24. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, New York. https://www.wiley.com/en-us/Infrared+Spectroscopy%3A+Fundamentals+and+Applications-p-9780470854280

    Book  Google Scholar 

  25. Harmsen PFH, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass, Research Report, 1–54. http://library.wur.nl/WebQuery/wurpubs/fulltext/150289

  26. Moore D, Robson GD, Trinci AP (2011) 21st century guidebook to fungi with CD. Cambridge University Press, Cambridge. https://www.cambridge.org/gb/academic/subjects/life-sciences/plant-science/21st-century-guidebook-fungi?format=WW&isbn=9780521186957

  27. Ramírez-Chan DE, López-Naranjo EJ, Canto-Canché B, Burgos-Canul YY, Cruz-Estrada RH (2014) Effect of accelerated weathering and Phanerochaete chrysosporium on the mechanical properties of a plastic composite prepared with discarded coir and recycled HDPE. BioResources 9:4022–4403. https://doi.org/10.15376/biores.9.3.4022-4037

    Article  Google Scholar 

  28. Talaiepour M, Hemmasi AH, Kasmani JE, Mirshokraie SA, Khademieslam H (2010) Effects of fungal treatment on structural and chemical features of hornbeam chips. BioResources 5:477–487. https://doi.org/10.15376/biores.5.1.477-487

    Article  CAS  Google Scholar 

  29. Huy ND, Thiyagarajan S, Kim D-H, Park S-M (2013) Cloning and characterization of a novel bifunctional acetyl xylan esterase with carbohydrate binding module from Phanerochaete chrysosporium. J Biosci Bioeng 115:507–513. https://doi.org/10.1016/j.jbiosc.2012.11.018

    Article  CAS  PubMed  Google Scholar 

  30. Dittmer JK, Patel NJ, Dhawale SW, Dhawale SS (1997) Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency FEMS Microbiol. Lett 149:65–70. https://doi.org/10.1016/S0378-1097(97)00055-4

    Article  CAS  Google Scholar 

  31. Cañero DC, Roncero MI (2008) Functional analyses of laccase genes from Fusarium oxysporum. Phytopathology 98:509–518. https://doi.org/10.1094/PHYTO-98-5-0509

    Article  CAS  PubMed  Google Scholar 

  32. Manavalan A, Adav SS, Sze SK (2011) iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium. J Proteomics 75:642–654. https://doi.org/10.1016/j.jprot.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  33. Wojtasik W, Kulma A, Kostyn K, Szopa J (2011) The changes in pectin metabolism in flax infected with Fusarium. Plant Physiol Biochem 49:862–872. https://doi.org/10.1016/j.plaphy.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  34. Degani O (2015) Production and purification of cutinase from fusarium oxysporum using modified growth media and a specific cutinase substrate. Adv Biosci Biotechnol 6:245–258. https://doi.org/10.4236/abb.2015.64024

    Article  CAS  Google Scholar 

  35. Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26:332–349. https://doi.org/10.1080/10242420802390457

    Article  CAS  Google Scholar 

  36. Quiroz-Castañeda RE, Folch-Mallol JL (2013) Hydrolysis of biomass mediated by cellulases for the production of sugars. In: Chandel A (ed) Sustainable degradation of lignocellulosic biomass techniques, applications and commercialization. InTech, pp 119–155. https://doi.org/10.5772/53719

    Google Scholar 

  37. Zhang X-Z, ZhangY-HP (2013) Cellulases: characteristics, sources, production, and applications. In: Yang S, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, pp 131–146. https://doi.org/10.1002/9781118642047.ch8

    Chapter  Google Scholar 

  38. Igarashi K, Tani T, Rie K, Masahiro S (2003) Family 3 beta-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-beta-glucosidase. J Biosci Bioeng 95:572–576. https://doi.org/10.1016/S1389-1723(03)80164-0

    Article  CAS  Google Scholar 

  39. Bakar NKA, Zanirun Z, Abd-Aziz Z, Ghazali FM, Hassan MA (2012) production of fermentable sugars from oil palm empty fruit bunch using crude cellulase cocktails with trichoderma asperellum upm1 and aspergillus fumigatus UPM2 for bioethanol production. BioResources 7:3627–3639. https://doi.org/10.15376/biores.7.3.3627-3639

    Article  Google Scholar 

  40. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23. https://doi.org/10.1016/j.femsre.2004.06.005

    Article  CAS  Google Scholar 

  41. Khan MA (2010) Hydrolysis of hemicellulose by commercial enzyme mixtures. Department of Chemical Engineering, Lulea University of Technology. http://www.diva-portal.org/smash/get/diva2:1022825/FULLTEXT01.pdf

  42. Margolles-Clark E (1996) Molecular characterization of side-chain cleaving hemicellulases of Trichoderma reesei. Technical Research Centre of Finland (1996). https://www.vtt.fi/inf/pdf/publications/1996/p276.pdf

  43. Li J, Cai S, Luo Y, Dong X (2011) Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides. Appl Environ Microbiol 77:6141–6147. https://doi.org/10.1128/AEM.00657-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase—a versatile enzyme for biotechnological applications. Commun Curr Res Educ Top Trends Appl Microbiol 1:233–245. http://www.formatex.org/microbio/pdf/Pages233-245.pdf

  45. Wang J, Feng J, Jia W, Chang S, Li S, Li Y (2015) Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels 8:145. https://doi.org/10.1186/s13068-015-0331-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Desai SS, Nityanand C (2011) Microbial laccases and their applications: a review. Asian J Biotechnol 3:98–124. https://doi.org/10.3923/ajbkr.2011.98.124

    Article  CAS  Google Scholar 

  47. Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282:1190–1213. https://doi.org/10.1111/febs.13224

    Article  CAS  PubMed  Google Scholar 

  48. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87. https://doi.org/10.1016/j.fgb.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  49. Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355. https://doi.org/10.1016/j.pbi.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  50. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466. https://doi.org/10.1016/S0141-0229(01)00528-2

    Article  CAS  Google Scholar 

  51. Herron SR, Benen JA, Scavetta RD, Visser J, Jurnak F (2000) Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc Natl Acad Sci 97:8762–8769. https://doi.org/10.1073/pnas.97.16.8762

    Article  CAS  PubMed  Google Scholar 

  52. Petersen TN, Kauppinen S, Larsen S (1997) The crystal structure of rhamnogalacturonase A from Aspergillus aculeatus: a right-handed parallel beta helix. Structure 5:533–544. https://doi.org/10.1016/S0969-2126(97)00209-8

    Article  CAS  PubMed  Google Scholar 

  53. Carvalho CM, Aires-Barros MR, Cabral J (1998) Cutinase structure, function and biocatalytic applications. Electron J Biotechnol 1:28–29. https://doi.org/10.4067/S0717-34581998000300006

    Article  Google Scholar 

  54. Kanelli M, Vasilakos S, Nikolaivits E, Ladas S, Christakopoulos P, Topakas E (2015) Surface modification of poly (ethylene terephthalate) (PET) fibers by a cutinase from Fusarium oxysporum. Process Biochem 50:1885–1892. https://doi.org/10.1016/j.procbio.2015.08.013

    Article  CAS  Google Scholar 

  55. Chen S, Su L, Chen J, Wu J (2013) Cutinase: characteristics, preparation, and application. Biotechnol Adv 31:1754–1767. https://doi.org/10.1016/j.biotechadv.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  56. Jiao C, Xiong J (2014) Accessibility and morphology of cellulose fibres treated with sodium hydroxide. BioResources 9:6504–6513. https://doi.org/10.15376/biores.9.4.6504-6513

    Article  Google Scholar 

  57. Zannen S, Ghali L, Halimi M, Hssen MB (2014) Effect of chemical extraction on physicochemical and mechanical properties of doum palm fibres. Adv Mater Phys Chem 4:203–216. https://doi.org/10.4236/ampc.2014.410024

    Article  Google Scholar 

  58. Thomas S, Pothan LA (2009) Natural fibre reinforced polymer composites: from macro to nanoscale, Archives contemporaines. http://www.gbv.de/dms/tib-ub-hannover/669562157.pdf

  59. Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chem—Eur J 17:5939–5948. https://doi.org/10.1002/chem.201002438

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Du L, Kai C, Huang R, Wu Q (2013) Bamboo and high density polyethylene composite with heat-treated bamboo fiber: thermal decomposition properties. BioResources 8:900–912. https://doi.org/10.15376/biores.8.1.900-912

    Article  Google Scholar 

  61. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442. https://doi.org/10.1016/j.matdes.2012.11.025

    Article  CAS  Google Scholar 

  62. Siregar JP, Sapuan SM, Rahman MZA, Zaman HMDK (2010) The effect of alkali treatment on the mechanical properties of short pineapple leaffibre (PALF) reinforced high impact polystyrene (HIPS) composites. J Food Agric Environ 8:1103–1108. http://psasir.upm.edu.my/id/eprint/17068

  63. Müssig J (2010) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, New York. https://doi.org/10.1002/9780470660324

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS) for the support and Swinburne University of Technology, Sarawak Campus.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elammaran Jayamani or Muhammad Khusairy Bin Bakri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayamani, E., Loong, T.G. & Bakri, M.K.B. Comparative study of Fourier transform infrared spectroscopy (FTIR) analysis of natural fibres treated with chemical, physical and biological methods. Polym. Bull. 77, 1605–1629 (2020). https://doi.org/10.1007/s00289-019-02824-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02824-w

Navigation