Skip to main content
Log in

Cross-linking and modification of sodium alginate biopolymer for dye removal in aqueous solution

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, spherical beads have been prepared by ionotropic gelation of sodium alginate using two types of cross-linking, physical cross-linking in the presence of Ca2+ ions and chemical cross-linking which was made with epichlorohydrin for environmental applications. The different beads of alginate were characterized by Fourier transform infrared spectroscopy, optical microscopy, scanning electron microscopy, and X-ray diffractometry to provide evidence of successful cross-linking. The physicochemical properties of the beads such as the average diameter, water content, the zero charge point, and the density were also determined. The efficiency of the beads as biosorbent for the removal of dyes is assessed using methyl violet (MV) as a model molecule. A comparative adsorption performance of wet calcium alginate beads (WCaAB), dry calcium alginate beads (DCaAB), wet epichlorohydrin cross-linked alginate beads (WEpAB), and dry epichlorohydrin cross-linked alginate beads (DEpAB) was made. The adsorption of methyl violet MV on cross-linked alginate beads was found to be comparatively higher than that of WCaAB, DCaAB, and WEpAB. The extent of adsorption of methyl violet MV onto cross-linked alginate beads (DEpAB) was found to be a function of the pH of the solution, contact time, sorbate concentration, amount of beads and stirring speed. The kinetics adsorption of MV onto cross-linked alginate beads (DEpAB) was investigated using the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetic models. The results showed that the pseudo-second-order kinetic model adequately describes the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from [39]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ya-Fen L, Hua-Wei C, Poh-Sun C, Chyow-San C, Cheng-Chung L (2011) Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution. J Hazard Mater 185:1124–1130

    Article  CAS  Google Scholar 

  2. Ting L, Tao X, Xue-Lian H, Cheng L, Wei-Feng Z, Qian Z, Chang-Sheng Z (2015) Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals. Carbohydr. Polym. 133:587–595

    Article  CAS  Google Scholar 

  3. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Biores Technol. 97:1061–1085

    Article  CAS  Google Scholar 

  4. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58:179–196

    Article  CAS  Google Scholar 

  5. Tan IAW, Hameed BH, Ahmad AL (2007) Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem. Eng. J. 127:111–119

    Article  CAS  Google Scholar 

  6. Raffainer II, Rudolf von Rohr P (2001) Promoted wet oxidation of the azo dye Orange II under mild conditions. Ind. Eng. Chem. Res. 40:1083–1089

    Article  CAS  Google Scholar 

  7. Elwakeel KZ, El-Bindary AA, El-Sonbati AZ, Hawas AR (2017) Magnetic alginate beads with high basic dye removal potential and excellent regeneration ability. Rev. Can. Chim. 95(8):807–815

    Article  CAS  Google Scholar 

  8. Shojaat R, Saadatjoo N, Karimi A, Aber S (2016) Simultaneous adsorption–degradation of organic dyes using MnFe2O4/calcium alginate nano-composites coupled with GOx and laccase. J. Environ. Chem. Eng. 4:1722

    Article  CAS  Google Scholar 

  9. Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat. Protoc. 1:2661

    Article  CAS  Google Scholar 

  10. Subbaiah MV, Kim DS (2016) Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: kinetics, isotherms, and thermodynamic studies. Ecotoxicol. Environ. Saf. 128:109

    Article  CAS  PubMed  Google Scholar 

  11. Lakshmipathy R, Sarada NC (2016) Methylene blue adsorption onto native watermelon rind: batch and fixed bed column studies. Desalin. Water. Treat. 57:10632

    Article  CAS  Google Scholar 

  12. Al-Kahtani AA, Abou Taleb MF (2016) Photocatalytic degradation of Maxilon CI basic dye using CS/CoFe2O4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation. J. Hazard. Mater. 309:10–19

    Article  CAS  PubMed  Google Scholar 

  13. Vaiano V, Iervolino G, Sannino D, Murcia JJ, Hidalgo MC, Ciambelli P, Navío JA (2016) Photocatalytic removal of patent blue V dye on Au–TiO2 and Pt–TiO2 catalysts. Appl. Catal. B 188:134–146

    Article  CAS  Google Scholar 

  14. Thangavel S, Thangavel S, Raghavan N, Krishnamoorthy K, Venugopal G (2016) Visible-light driven photocatalytic degradation of methylene-violet by rGO/Fe3O4/ZnO ternary nanohybrid structures. J. Alloys Compd. 665:107

    Article  CAS  Google Scholar 

  15. Aravind P, Subramanyan V, Ferro S, Gopalakrishnan R (2016) Eco-friendly, and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater. Water Res. 93:230

    Article  CAS  PubMed  Google Scholar 

  16. Benjwal P, Kar KK (2015) Removal of methylene blue from waste water under low power irradiation source by Zn, Mn co-doped TiO2 photocatalyst. RSC Adv. 5:98166

    Article  CAS  Google Scholar 

  17. Papic S, Koprivanac N, Bozic AL, Metes A (2004) Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process. Dyes Pigments 62:291

    Article  CAS  Google Scholar 

  18. Bouras HD, Benturki O, Bouras N, Attou M, Donnot A, Merlin A, Addoun F, Holtz MD (2015) The use of an agricultural waste material from Ziziphus jujuba as a novel adsorbent for humic acid removal from aqueous solutions. J. Mol. Liq. 211:1039–1046

    Article  CAS  Google Scholar 

  19. Baban A, Yediler A, Lienert D, Kemerdere N, Kettrup A (2003) Ozonation of high strength segregated effluents from a woollen textile dyeing and finishing plant. Dyes Pigments 58:93

    Article  CAS  Google Scholar 

  20. Xu L, Sun Y, Zhang L, Zhang J, Wang F (2015) Electrochemical oxidation of C.I. Acid Red 73 wastewater using Ti/SnO2–Sb electrodes modified by carbon nanotube. Desalin. Water. Treat. 57:8815–8825

    Article  CAS  Google Scholar 

  21. Edip B, Erol A (2010) Electrochemically enhanced removal of polycyclic aromatic basic dyes from dilute aqueous solutions by activated carbon cloth electrodes. Environ. Sci. Technol. 44:6331–6336

    Article  CAS  Google Scholar 

  22. Ledakowicz S, Solecka M, Zylla R (2001) Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J. Biotechnol. 89:175

    Article  CAS  PubMed  Google Scholar 

  23. Tan BH, Teng TT, Mohd Omar AKM (2000) Removal of dyes and industrial dye wastes by magnesium chloride. Water Res. 34:597–601

    Article  CAS  Google Scholar 

  24. Koyuncu I, Topacik D, Yuksel E (2004) Reuse of reactive dye house wastewater by nanofiltration: process water quality and economical implications. Sep. Purif. Technol. 36:77–85

    Article  CAS  Google Scholar 

  25. Slejko FL (1985) Adsorption Technology: A Step-by-step Approach to Process Evaluation and Application. Marcel Dekker, New York

    Google Scholar 

  26. Hasan S, Krishnaiah A, Ghosh TK, Viswanath DS (2006) Adsorption of divalent cadmium (Cd(II)) from aqueous solutions onto chitosan-coated perlite beads. Ind. Eng. Chem. Res. 45:5066–5077

    Article  CAS  Google Scholar 

  27. Huang GL, Zhang HY, Shi JX, Langrish TAG (2009) Adsorption of chromium(VI) from aqueous solutions using cross-linked magnetic chitosan beads. Ind. Eng. Chem. Res. 48:2646–2651

    Article  CAS  Google Scholar 

  28. Kumar NS, Suguna M, Subbaiah MV, Reddy AS, Kumar NP, Krishnaiah A (2010) Adsorption of phenolic compounds from aqueous solutions onto chitosan-coated perlite beads as biosorbent. Ind. Eng. Chem. Res. 49:9238–9247

    Article  CAS  Google Scholar 

  29. Rocher V, Siaugue J-M, Cabuil V, Bee A (2008) Removal of organic dyes by magnetic alginate beads. Water Res. 42:1290–1298

    Article  CAS  PubMed  Google Scholar 

  30. Fundueanu G, Nastruzzi C, Carpov A, Desbrieres J, Rinaudo M (1999) Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 20:1427–1435

    Article  CAS  PubMed  Google Scholar 

  31. Blandino A, Macias M, Cantero D (1999) Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics. J. Biosci. Bioeng. 88(6):686–689

    Article  CAS  PubMed  Google Scholar 

  32. Rocher V, Bee A, Siaugue J-M, Cabuil VE (2010) Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J. Hazard. Mater. 178:434–439

    Article  CAS  PubMed  Google Scholar 

  33. Zhao W, Wahyu R, Nugroho N, Odelius K, Edlund U, Zhao C, Albertsson AC (2015) In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying. CS Appl. Mater. Interfaces 7(7):4202–4215. https://doi.org/10.1021/am5084732

    Article  CAS  Google Scholar 

  34. Zhao W, Odelius K, Edlund U, Zhao C, Albertsson AC (2015) In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules 16(8):2522–2528. https://doi.org/10.1021/acs.biomac.5b00801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vijayakumar G, Dharmendirakumar M, Renganathan S, Sivanesan S, Baskar G, Elango KP (2009) Removal of congo red from aqueous solutions by perlite. Clean-Soil Air Water 37:355–364

    Article  CAS  Google Scholar 

  36. Ho Y, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem. 34:451–465

    Article  CAS  Google Scholar 

  37. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. Eng. Div. Proc. Am. Soc. Civil Eng. 89:31–60

    Google Scholar 

  38. Smidsrod O (1974) Molecular basis for some physical properties of alginate in gel state. Faraday Discuss. Chem. Soc. 57:263

    Article  Google Scholar 

  39. Bhattarai N, Zhang MQ (2007) Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology. https://doi.org/10.1088/0957-4484/18/45/455601

    Article  Google Scholar 

  40. Gupta VK, Jain R, Varshney S, Saini VK (2007) Removal of Reactofix Navy Blue 2 GFN from aqueous solution using adsorption techniques. Colloid. Interface Sci. 307:326–332

    Article  CAS  Google Scholar 

  41. Meenakshi Sundaram M, Sivakumar S (2012) Use of Indian almond shell waste and groundnut shell waste for the removal of azure A dye from aqueous solution. J. Chem. Pharm. Res. 4:2047–2054

    CAS  Google Scholar 

  42. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of CIBasic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep. Purif. Technol. 53:97–110

    Article  CAS  Google Scholar 

  43. Elbariji S, Elamine M, Eljazouli H, Kabli H, Lacherai A, Albourine A (2006) Traitement et valorisation des sous-produits du bois. Application à l’élimination des colorants industriels. C.R. Chimie 9:1314–1321

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakim Lounici.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merakchi, A., Bettayeb, S., Drouiche, N. et al. Cross-linking and modification of sodium alginate biopolymer for dye removal in aqueous solution. Polym. Bull. 76, 3535–3554 (2019). https://doi.org/10.1007/s00289-018-2557-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2557-x

Keywords

Navigation