Skip to main content
Log in

Synthesis, characterization and adsorption properties of alginate porous beads

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Original calcium alginate beads with porous structure and high adsorption surface are proposed. The beads were synthesized using sodium alginate in the presence of sodium dodecyl sulfate as foaming agent, NaCl as porogen agent and CaCl2 as cross-linker. They were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer–Emmett–Teller method. The adsorption capacity of beads was tested with methylene blue (MB). The data show that the adsorption efficiency increases with the amount of beads, decreases with pollutant concentration, and is maximal at pH = 9. The adsorption is fast in the first 3 hours, and slows down thereafter. The kinetic results show that the adsorption of MB on alginate porous beads obeys the Langmuir model. A scheme of MB adsorption taking into account the ionic interactions with calcium alginate beads has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Davidovich-Pinhas M, Bianco-Peled H (2010) A quantitative analysis of alginate swelling. Carbohydr Polym 79:1020–1027. doi:10.1016/j.carbpol.2009.10.036

    Article  CAS  Google Scholar 

  2. Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE (2012). Alginates as biomaterials in tissue engineering. In: Rauter AP (ed) Carbohydrate chemistry: chemical and biological approaches, 3rd edn. RSC Publishing, Cambridge, pp 227–239

  3. Kawarada H, Hirai A, Odani H, Lida T, Nakajima A (1990) Structural characterization of alginate and conformational behaviors of various alkali-metal alginates in solution. Polymer Bull 24:551–557

    Article  CAS  Google Scholar 

  4. Larsen B, Haug A (1971) Biosynthesis of alginate. Carbohydr Res 17:287–296

    Article  CAS  Google Scholar 

  5. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interaction between polysaccharides and divalent cations: the egg box model. FEBS Lett 32:195–198

    Article  CAS  Google Scholar 

  6. Mahkam M (2009) Bioadhesive alginate copolymers as platforms for oral delivery of insulin. Nat Sci 7(6):61–69. http://www.sciencepub.net

  7. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309. doi:10.3390/ma6041285

    Article  CAS  Google Scholar 

  8. Li L, Fang Y, Vreeker R, Appelqvist I, Mendes E (2007) Reexamining the egg-box model in calcium-alginate gels with X-ray diffraction. Biomacromolecules 8:464–468. doi:10.1021/bm201477g

    Article  CAS  Google Scholar 

  9. Zhu M-X, Lee L, Wang H-H, Wang Z (2007) Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J Hazard Mater 149:735–741. doi:10.1016/j.jhazmat.2007.04.037

    Article  CAS  Google Scholar 

  10. Veeramalini JB, Sravanakumar K, Joshua Amarnath D (2012) Removal of reactive yellow dye from aqueous solutions by using natural coagulant. Int J Sci Environ Technol 1:56–62

    Google Scholar 

  11. Kaşgöz H (2006) New sorbent hydrogels for removal of acidic dyes and metal ions from aqueous solutions. Polym Bull 56:517–528. doi:10.1007/s00289-006-0515-5

    Article  Google Scholar 

  12. Grefte A, Dignum M, Cornelissen ER, Rietveld LC (2013) Natural organic matter removal by ion exchange at different positions in the drinking water treatment lane. Drink Water Eng Sci 6:1–10. doi:10.5194/dwes-6-1-2013

    Article  CAS  Google Scholar 

  13. Tahir H, Sultan M, Qadir Z (2013) Physiochemical modification and characterization of bentonite clay and its application for the removal of reactive dyes. Int J Chem 5:19–38. doi:10.5539/ijc.v5n3p19

    Article  Google Scholar 

  14. Ould Brahim I, Belmedani M, Belgacem A, Hadoun H, Sadaoui Z (2014) Discoloration of azo dye solutions by adsorption on activated carbon prepared from the cryogenic grinding of used tires. Chem Eng Trans 38:121–126. doi:10.3303/CET1438021

    Google Scholar 

  15. Akl MA, Youssef AM, Al-Awadhi MM (2013) Adsorption of acid dyes onto bentonite and surfactant-modified bentonite. J Anal Bioanal Tech 4:1–7. doi:10.4172/2155-9872.1000174

    Google Scholar 

  16. Panić VV, Šešlija SI, Nešić AR, Veličković SJ (2013) Adsorption of azo dyes on polymer materials. Hem Ind 67:881–900. doi:10.2298/HEMIND120830019D

    Article  Google Scholar 

  17. Mahdavinia GR, Bazmizeynabad F, Seyyedi B (2013) kappa-Carrageenan beads as new adsorbent to remove crystal violet dye from water: adsorption kinetics and isotherm. Desalin Water Treatm 41:1–11. doi:10.1080/19443994.2013.870741

    Google Scholar 

  18. Agostini de Moraes M, Cocenza DS, da Cruz Vasconcellos F, Fraceto LF, Beppu MM (2013) Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. J Environ Manag 131:222–227. doi:10.1016/j.jenvman.2013.09.028

    Article  CAS  Google Scholar 

  19. Ding Y, Zhao Y, Tao X, Zheng YZ, Chen JF (2009) Assembled alginate/chitosan micro-shells for removal of organic pollutants. Polymer 50:2841–2846. doi:10.1016/j.polymer.2009.04.046

    Article  CAS  Google Scholar 

  20. Aravindhan R, Fathima NN, Rao JR, Nair BU (2007) Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloid Surf A 299:232–238. doi:10.1016/j.colsurfa.2006.11.045

    Article  CAS  Google Scholar 

  21. Tzu TW, Tsuritani T, Sato K (2013) Sorption of Pb(II), Cd(II), and Ni(II) toxic metal ions by alginate-bentonite. J Environ Prot 4:51–55. doi:10.4236/jep.2013.41B010

    Article  CAS  Google Scholar 

  22. Wang W, Kang Y, Wang A (2013) One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res 20:101–111. doi:10.1007/s10965-013-0101-0

    Article  Google Scholar 

  23. Nadavala SK, Swayampakula K, Boddu VM, Abburi K (2009) Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. J Hazard Mater 162:482–489. doi:10.1016/j.jhazmat.2008.05.070

    Article  CAS  Google Scholar 

  24. Peretz S, Cinteza O (2008) Removal of some nitrophenol contaminants using alginate gel beads. Colloid Surf A 319:165–172. doi:10.1016/j.colsurfa.2007.06.012

    Article  CAS  Google Scholar 

  25. Jeon YS, Lei J, Kim J-H (2008) Dye adsorption characteristics of alginate/polyaspartate hydrogels. J Ind Eng Chem 14:726–731. doi:10.1016/j.jiec.2008.07.007

    Article  CAS  Google Scholar 

  26. Barrón-Zambrano JA, López-Pérez AJ, Ávila-Ortega A, Muñoz-Rodríguez D, Carrera-Figueiras C (2013) Adsorption of cationic dye on a biohybrid SiO2-alginate. IOP Conf Ser Mat Sci Eng 45:012018. doi:10.1088/1757-899X/45/1/012018

    Article  Google Scholar 

  27. Wang C, Liu H, Gao Q, Liu X, Tong Z (2008) Alginate–calcium carbonate porous microparticle hybrid hydrogels with versatile drug loading capabilities and variable mechanical strengths. Carbohydr Polym 71:476–480. doi:10.1016/j.carbpol.2007.06.018

    Article  CAS  Google Scholar 

  28. Prouzet E, Khani Z, Bertrand M, Tokumoto M, Guyot-Ferreol V, Tranchant J-F (2006) An example of integrative chemistry: combined gelation of boehmite and sodium alginate for the formation of porous beads. Microporous Mesoporous Mat 96:369–375. doi:10.1016/j.micromeso.2006.07.011

    Article  CAS  Google Scholar 

  29. Mohan N, Nair PD (2005). Novel porous, polysaccharide scaffolds for tissue engineering applications. Trends Biomater Artif Organs 18:219–224. http://www.sbaoi.org

  30. Partap S, Muthutantri A, Rehman IU, Davis GR, Darr JA (2007) Preparation and characterisation of controlled porosity alginate hydrogels made via a simultaneous micelle templating and internal gelation process. J Mat Sci 42:3502–3507. doi:10.1007/s10853-007-1533-x

    Article  CAS  Google Scholar 

  31. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Soc 60:309–319

    Article  CAS  Google Scholar 

  32. Bang J-H, Song KS, Lee MG, Jeon CW, Jang YN (2010) Effect of critical micelle concentration of sodium dodecyl sulfate dissolved in calcium and carbonate source solutions on characteristics of calcium carbonate crystals. Mater Trans 51:1486–1489. doi:10.2320/matertrans.M2010134

    Article  CAS  Google Scholar 

  33. Peng C, Zhao Q, Gao C (2010) Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles. Colloid Surf A 353:132–139. doi:10.1016/j.colsurfa.2009.11.004

    Article  CAS  Google Scholar 

  34. Broekhoff JCP, de Boer JH (1967) Studies on pore in catalysts. X. Calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores. B Applications. J Catal 9:15–27

    Article  CAS  Google Scholar 

  35. Akamatsu K, Maruyama K, Chen W, Nakao A, Nakao S (2011) Drastic difference in porous structure of calcium alginate microspheres prepared with fresh or hydrolyzed sodium alginate. J Colloid Interf Sci 363:707–710. doi:10.1016/j.jcis.2011.08.014

    Article  CAS  Google Scholar 

  36. Nakamoto K (1986) Infrared and raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New York

    Google Scholar 

  37. Inel O, Tumsek F (2000) The measurement of surface areas of some silicates by solution adsorption. Turk J Chem 24:9–19

    CAS  Google Scholar 

  38. Arivoli S, Hema M, Parthasarathy S, Manju N (2010) Adsorption dynamics of methylene blue by acid activated carbon. J Chem Pharm Res 2(5):626–641. http://www.jocpr.com

  39. Delle Site A (2001). Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data 30:187–253 (0047-2689/2001/30(1)/187/253)

    Article  CAS  Google Scholar 

  40. Rozada F, Otero M, Morán A, García AI (2008) Adsorption of heavy metals onto sewage sludge-derived materials. Bioresour Technol 99:6332–6338. doi:10.1016/J.BIORTECH.2007.12.015

    Article  CAS  Google Scholar 

  41. Rees DA, Welsh EJ (1977) Secondary and tertiary structure of polysaccharides in solutions and gels. Angew Chem Int Ed Engl 16:214–224

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry. The support of EU (ERDF) and Romanian Government (POS-CCE O2.2.1 project INFRANANOCHEM, No. 19/2009.03.01) and of (UEFISCDI) (Project PN-II-ID-PCE-2011-3-0916, Contract No. 177/2011) is gratefully acknowledged. The authors would like to pay a special tribute to their colleague Manuela Florea-Spiroiu who passed away during the elaboration of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandu Peretz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peretz, S., Anghel, D.F., Vasilescu, E. et al. Synthesis, characterization and adsorption properties of alginate porous beads. Polym. Bull. 72, 3169–3182 (2015). https://doi.org/10.1007/s00289-015-1459-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1459-4

Keywords

Navigation