Skip to main content

Advertisement

Log in

Band structure and optical properties of polyaniline polymer material

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present contribution reports on the electronic structure and optical properties of the polyaniline polymer material. The calculations are performed using ab initio total energy calculations within the full-potential linearized augmented plane wave method in the framework of the density functional theory. The generalized gradient approximation is used to treat the effects of exchange and correlation. The fundamental band-gap energy and static and high-frequency dielectric constants of the polymer of interest are predicted. The optical spectra against the photon incident energy along both the x- and z-axis are presented and examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sekhar PK, Brosha EL, Mukundan R, Garzon FH (2010) Chemical sensors for environmental monitoring and homeland security, The Electrochemical Society Interface, Winter 35–40

  2. Merian T (2009) Etude de la polymérisation plasma, en mode continu ou pulsé, de l’aniline et de la 3-fluoroaniline: Application à la détection de gaz, l’ammoniac, PhD thesis. University of Maine, France. http://cyberdoc.univ-lemans.fr/theses/2009/2009LEMA1021.pdf

  3. Azim Araghi ME, Jafari MJ (2010) Electrical and gas sensing properties of polyaniline-chloroaluminium phthalocyanine composite thin films. Eur Phys J Appl Phys 52:10402

    Article  Google Scholar 

  4. Vázquez NAR, Delgado RS, Hernández EG, Martínez AMM (2009) Characterization of copolymer based in polyurethane and polyaniline (PU/PANI). J Mex Chem Soc 53:248–252

    Google Scholar 

  5. Ibrahim M (2011) Polyaniline-oxyde de titane: un composite pour la récolte et le stockage d’énergie, PhD thesis. University of Lyon, Lyon. https://tel.archives-ouvertes.fr/tel-00740808/document

  6. Torres J-E, Hu H, Saniger JM (2005) Comparison of NO2 and NH3 gas adsorption on semiconductor polyaniline thin films. Rev Mex Fis 51:482–487

    Google Scholar 

  7. Bouarissa A (2016) Etude expérimentale et théorique des propriétés physico-chimiques du polyaniline, polypyrrole et leur copolymère, Master Dissertation. University of Bordj-Bou-Arreridj, Algeria

  8. Benykhlef S, Bekhoukh A, Berenguer R, Benyoucef A, Morallon E (2016) PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization and electrochemical studies. Colloid Poly Sci 294:1877–1885

    Article  CAS  Google Scholar 

  9. Chouli F, Radja I, Morallon E, Benyoucef A (2015) A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium (IV) oxide nanoparticles: synthesis, characterization and electrochemical properties. Polym Compos. doi:10.1002/pc.23837

    Article  Google Scholar 

  10. Dahou FZ, Khaldi MA, Zehhaf A, Benyoucef A, Ferrahi MI (2016) Nanocomposite of 2-aminophenol with aniline using copper-montmorillonite: synthesis, characterization, conductivity, and electrochemical study. Adv Polym Technol 35:411–418

    Article  CAS  Google Scholar 

  11. Radja I, Djelad H, Morallon E, Benyoucef A (2015) Characterization and electrochemical properties of conducting nanocomposites synthesised from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth Met 202:25–32

    Article  CAS  Google Scholar 

  12. Khaldi M, Benyoucef A, Quijada C, Yahiaoui A, Morallon E (2014) Synthesis, characterization and conducting properties of nanocomposites of intercolated 2-aminophenol with aniline in sodium-montmorillonite. J Inorg Organometal Polym Mater 24:267–274

    Article  CAS  Google Scholar 

  13. Chouli F, Zehhaf A, Benyoucef A (2014) Preparation and characterization of the new conducting composites obtained from 2-methylaniline and aniline with activated carbon by in situ interactive oxidative polymerization. Macromol Res 22:26–31

    Article  CAS  Google Scholar 

  14. Hoffmann R (1988) A chemical and theoretical way to look at bonding on surfaces. Rev Mod Phys 60:601–628

    Article  CAS  Google Scholar 

  15. Al-Assiri MS, Bouarissa N (2013) Electronic band structure and derived properties of AlAs x Sb1−x alloys. Superlattices Microstruct 59:144–154

    Article  CAS  Google Scholar 

  16. Bouarissa N, Siddiqui SA, Boucenna M, Khan MA (2017) Band structure and optical constants of GaAs1−x N x . Optik 131:317–322

    Article  CAS  Google Scholar 

  17. Adachi S (1987) Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: key properties for a variety of the 2-4-μm optoelectronic device applications. J Appl Phys 61:4869–4876 (and references therein)

    Article  CAS  Google Scholar 

  18. Andersen OK (1975) Linear methods in band theory. Phys Rev B 12:3060–3083

    Article  CAS  Google Scholar 

  19. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  20. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  21. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2008) WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna

    Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  23. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  24. Pack JD, Monkhorst HJ (1977) Special points for Brillouin-zone integrations-a reply. Phys Rev B 16:1748–1749

    Article  Google Scholar 

  25. Bouarissa N (1999) The effect of compositional disorder on electronic band structure in Ga x In1−x As y Sb1−y alloys lattice matched to GaSb. Superlattices Microstruct 26:279–287

    Article  CAS  Google Scholar 

  26. Bouarissa N (2000) The effect of hydrostatic pressure on the electronic and optical properties of InP. Solid State Electron 44:2193–2198

    Article  CAS  Google Scholar 

  27. Bouarissa N (2007) Pseudopotential calculations of Cd1–x Zn x Te: energy gaps and dielectric constants. Phys B 399:126–131

    Article  CAS  Google Scholar 

  28. Bouarissa N (1998) Effects of compositional disorder upon electronic and lattice properties of Ga x In1−x As. Phys Lett A 245:285–291

    Article  CAS  Google Scholar 

  29. Zerroug S, Gueddim A, Bouarissa N (2016) Composition dependence of fundamental properties of Cd1−x Co x Te magnetic semiconductor alloys. J Comput Electron 15:473–478

    Article  CAS  Google Scholar 

  30. Gueddim A, Madjet ME, Zerroug S, Bouarissa N (2016) First-principles investigations of electronic properties and optical spectra of Cd1−x Mn x Te dilute magnetic semiconductors. Opt Quant Electron 48:551 (13 pages)

    Article  CAS  Google Scholar 

  31. Adachi S (2005) Properties of group-IV, III–V and II–VI Semiconductors. Wiley, Chichester, England

    Book  Google Scholar 

  32. Gueddim A, Zerroug S, Bouarissa N (2013) Optical characteristics of ZnTe1−x O x alloys from first-principles calculations. J Lumin 135:243–247

    Article  CAS  Google Scholar 

  33. Khan MA, Bouarissa N (2013) Optical and energy-loss spectra of ZnS from ab initio molecular dynamics simulation: temperature effect. Optik 124:5095–5098

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Bouarissa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouarissa, A., Gueddim, A., Bouarissa, N. et al. Band structure and optical properties of polyaniline polymer material. Polym. Bull. 75, 3023–3033 (2018). https://doi.org/10.1007/s00289-017-2189-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2189-6

Keywords

Navigation