Skip to main content
Log in

Epoxy-silicone copolymer synthesis via efficient hydrosilylation reaction catalyzed by high-activity platinum and its effect on structure and performance of silicone rubber coatings

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, two different pre-polymers were obtained first through efficient hydrosilylation reaction by changing reaction time and catalyst dosage in the presence of polyoxyethylene epoxy resin (DEG-501) and hydrogen silicone oil with phenyl (UC-233), named EH-F and EH-L. And the chemical structure of pre-polymers was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H-NMR). Then the pre-polymers were incorporated into phenyl-containing silicone rubber at different mass fractions. Scanning electron microscopy observations demonstrated that a “sea-island” phase separation occurred obviously in the cured composites. Thermogravimetric analysis evaluation revealed that thermal stability of silicone rubber composites improved markedly after modification, the residual yield at 800 °C achieved 32.69% in the air atmosphere when 20 phr EH-F were introduced. And a degradation mechanism was discussed through elemental analysis and electronic images of char of silicone rubber systems. The mechanical properties results showed that tensile strength and shear strength of composites increased gradually with increasing EH pre-polymers. All of these results provide very valuable information for understanding hydrosilylation reaction and effects of molecular structures on performance of silicone rubber systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 3
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dong FY, Diao S, Ma DP, Zhang SY, Feng SY (2015) Preparation and characterization of 3-chloropropyl polysiloxane-based heat-curable silicone rubber using polyamidoamine dendrimers as cross-linkers. React Funct Polym 96:14–20

    Article  CAS  Google Scholar 

  2. Wang XL, Dou WQ (2012) Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites. Thermochim Acta 529:25–28

    Article  CAS  Google Scholar 

  3. Zhou C, Li R, Luo W, Chen Y, Zou HW, Liang M (2016) The preparation and properties study of polydimethylsiloxane-based coatings modified by epoxy resin. J Polym Res 23:14

    Article  Google Scholar 

  4. Zhu C, Deng C, Cao JY, Wang YZ (2015) An efficient flame retardant for silicone rubber: preparation and application. Polym Degrad Stab 121:42–50

    Article  CAS  Google Scholar 

  5. Chang CL, Don TM, Lee HS-J, Sha Y-O (2004) Studies on the aminolysis of RTV silicone rubber and modifications of degradation products. Polym Degrad Stab 85:769–777

    Article  CAS  Google Scholar 

  6. Pinto S, Alves P, Matos CM, Santos AC, Rodrigues LR, Teixeira JA, Gil MH (2010) Poly (diethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Colloid Surf B 81:20–26

    Article  CAS  Google Scholar 

  7. Abbasi F, Mirzadeh H, Katbab A (2001) Modification of polysiloxane polymers for biomedical applications: a review. Polym Int 50:1279–1287

    Article  CAS  Google Scholar 

  8. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576

    Article  CAS  Google Scholar 

  9. Williams RL, Wilson DJ, Rhodes NP (2004) Stability of plasma-treated silicone rubber and its influence on the interfacial aspects of blood compatibility. Biomaterials 25:4659–4673

    Article  CAS  Google Scholar 

  10. Cordeiro AL, Nitschke M, Janke A, Helbig R, D’Souza F, Donnelly GT, Willemsen PR, Werner C (2009) Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma -physicochemical and antifouling properties. Express Polym Lett 3:70–83

    Article  CAS  Google Scholar 

  11. Sugiura S, Edahiro J, Sumaru K, Kanamori T (2008) Surface modification of polydimethylsiloxane with photo-grafted poly(ethyleneglycol) for micropatterned protein adsorption and cell adhesion. Colloid Surf B 63:301–305

    Article  CAS  Google Scholar 

  12. Bodas D, Malek CK (2006) Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron Eng 83:1277–1279

    Article  CAS  Google Scholar 

  13. Boxshall K, Wu MH, Cui Z, Cui ZF, Watts JF, Baker MA (2006) Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) microbioreactor. Surf Interface Anal 38:198–201

    Article  CAS  Google Scholar 

  14. Mikhail AS, Jones KS, Sheardown H (2008) Dendrimer-grafted cell adhesion peptide-modified PDMS. Biotechnol Prog 24:938–944

    Article  CAS  Google Scholar 

  15. Karkhaneh A, Mirzadeh H, Ghaffariyeh AR (2007) Simultaneous graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto polydimethylsiloxane surfaces using a two-step plasma treatment. J Appl Polym Sci 105:2208–2217

    Article  CAS  Google Scholar 

  16. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  CAS  Google Scholar 

  17. Lippens E, Smet ND, Schauvliege S, Martens A, Gasthuys F, Schacht E, Cornelissen R (2012) Biocompatibility properties of surface-modified poly(dimethylsiloxane) for urinary applications. J Biomater Appl 27:651–660

    Article  Google Scholar 

  18. Xiao D, Zhang H, Wirth M (2002) Chemical modification of the surface of poly(dimethylsiloxane) by atom-transfer radical polymerization of acrylamide. Langmuir 18:9971–9976

    Article  CAS  Google Scholar 

  19. Ren XQ, Bachman M, Sims C, Li GP, Allbritton NJ (2001) Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). J Chromatogr B Biomed Sci Appl 762:117–125

    Article  CAS  Google Scholar 

  20. Seitz V, Arzt K, Mahnel S, Rapp C, Schwaminger S, Hoffstetter M, Wintermantel E (2016) Improvement of adhesion strength of self-adhesive silicone rubber on thermoplastic substrates—comparison of an atmospheric pressure plasma jet (APPJ) and a Pyrosil® flame. Int J Adhes Adhes 66:65–72

    Article  CAS  Google Scholar 

  21. Eddington DT, Puccinelli JP, Beebe DJ (2006) Extended curing and reduced hydrophobic recovery of polydimethylsiloxane. Sens Actuators B 114:170–172

    Article  CAS  Google Scholar 

  22. Min GK, Hernandez D, Skrydstrup T (2013) Efficient routes to carbon–silicon bond formation for the synthesis of silicon-containing peptides and azasilaheterocycles. Acc Chem Res 46:457–470

    Article  CAS  Google Scholar 

  23. Van DD, Hosokawa T, Saito M, Horiuchi Y, Matsuoka M (2015) A heterogeneous mesoporous silica-supported cyclopentadienyl ruthenium(II) complex catalyst for selective hydrosilylation of 1-hexyne at room temperature. Appl Catal A 503:203–208

    Article  Google Scholar 

  24. Revunova K, Nikonov GI (2014) Base-catalyzed hydrosilylation of ketones and esters and insight into the mechanism. Chem A Eur J 20:839–845

    Article  CAS  Google Scholar 

  25. Xu YS, Bai Y, Peng JJ, Li JY, Xiao WJ, Lai GQ (2014) Hydrosilylation of alkenes catalyzed by rhodium with polyethylene glycol-based ionic liquids as ligands. J Organomet Chem 765:59–63

    Article  CAS  Google Scholar 

  26. Sumida Y, Kato T, Yoshida S, Hosoya T (2012) Palladium-catalyzed regio- and stereoselective hydrosilylation of electron-deficient alkynes. Org Lett 14:1552–1555

    Article  CAS  Google Scholar 

  27. Caminoa G, Lomakin SM, Lazzari M (2001) Polydimethylsiloxane thermal degradation. Part 1. Kinetic aspects. Polymer 42:2395–2402

    Article  Google Scholar 

  28. Camino G, Lomakin SM, Lageard M (2002) Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer 43:2011–2015

    Article  CAS  Google Scholar 

  29. Deshpande G, Rezac ME (2001) The effect of phenyl content on the degradation of poly(dimethyl diphenyl) siloxane copolymers. Polym Degrad Stab 74:363–370

    Article  CAS  Google Scholar 

  30. Yang ZZ, Han S, Zhang R, Feng SY, Zhang CQ, Zhang SY (2011) Effects of silphenylene units on the thermal stability of silicone resins. Polym Degrad Stab 96:2145–2151

    Article  CAS  Google Scholar 

  31. Zhou WJ, Yang H, Guo XZ, Lu JJ (2006) Thermal degradation behaviors of some branched and linear polysiloxanes. Polym Degrad Stab 91:1471–1475

    Article  CAS  Google Scholar 

  32. Liu YR, Huang YD, Liu L (2007) Influences of monosilanolisobutyl-POSS on thermal stability of polymethylsiloxane. J Mater Sci 42:5544–5550

    Article  CAS  Google Scholar 

  33. Mutin PH (1999) Control of the composition and structure of silicon oxycarbide and oxynitride glasses derived from polysiloxane precursors. J Sol-Gel Sci Technol 14:27–38

    Article  CAS  Google Scholar 

  34. Grassie N, Macfarlane IG, Francey KF (1979) The thermal degradation of polysiloxanes—II. Poly(methylphenylsiloxane). Eur Polym J 15:415–422

    Article  CAS  Google Scholar 

  35. Vennemann N, Bokamp K, Broker D (2006) Crosslink density of peroxide cured TPV. Macromol Symp 245–246:641–650

    Article  Google Scholar 

  36. Dong S, Gu K (2000) Influence of rubber composition on change of crosslink density of rubber vulcanizates with EV cure system by thermal aging. J Appl Polym Sci 75:1378–1384

    Article  Google Scholar 

  37. Enns JB, Gillham JK (1983) Effect of the extent of cure on the modulus, glass transition, water absorptio, and density of an amine-cured epoxy. J Appl Polym Sci 28:2831–2846

    Article  CAS  Google Scholar 

  38. Zhang CQ, Xia Y, Chen RQ, Huh S, Johnston PA, Kessler MR (2013) Soy-castor oil based polyols prepared using a solvent-free and catalyst-free method and polyurethanes therefrom. Green Chem 15:1477–1484

    Article  CAS  Google Scholar 

  39. Nielsen LE (1969) Cross-linking–effect on physical properties of polymers. J Macromol Sci Part C 3:69–103

    Article  CAS  Google Scholar 

  40. Abbasian A, Ghaffarian SR, Mohammadi N, Fallahi D (2004) The contact angle of thin-uncured epoxy films: thickness effect. Colloid Surface A Physicochem Eng Aspects 236:133–140

    Article  CAS  Google Scholar 

  41. Martin HJ, Schulz KH, Bumgardner JD, Walters KB (2007) XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface. Langmuir 23:6645–6651

    Article  CAS  Google Scholar 

  42. Zhang H, Zhang J, Song S, Wu GF, Pu JW (2011) Modified nanocrystalline cellulose from two kinds of modifiers used for improving formaldehyde emission and bonding strength of urea-formaldehyde resinadhesive. BioResources 6:4430–4438

    CAS  Google Scholar 

  43. Sardon H, Irusta L, González A, Fernández-Berridi MJ (2013) Waterborne hybrid polyurethane coatings functionalized with (3-aminopropyl)triethoxysilane: adhesion properties. Prog Org Coat 76:1230–1235

    Article  CAS  Google Scholar 

  44. Aran K, Sasso LA, Kamdar N, Zahn JD (2010) Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab Chip 10:548–552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article. The authors would thank the National Natural Science Foundation of China (51273118) for financial support, and the Analytical and Testing Center of Sichuan University for providing SEM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawei Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, R., Luo, J. et al. Epoxy-silicone copolymer synthesis via efficient hydrosilylation reaction catalyzed by high-activity platinum and its effect on structure and performance of silicone rubber coatings. Polym. Bull. 75, 2105–2124 (2018). https://doi.org/10.1007/s00289-017-2127-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2127-7

Keywords

Navigation