Skip to main content
Log in

Bio-based poly(pentamethylene oxamide) synthesized by spray/solid-state polycondensation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, an attempt was made to prepare bio-based poly(pentamethylene oxamide) (PA52) using a novel process of spray/solid-state polycondensation. A prepolymer of relative viscosity of 1.3 was prepared by spray polycondensation, where the monomers (dibutyl oxalate and 1,5-pentanediamine) were separately injected into the nozzle, atomized simultaneously under nitrogen flow, mixed, and polymerized at room temperature. After solid-state polycondensation, PA52 with relative viscosity of 3.2, weight-average molecular weight of 4.3 × 104, and melting point of 301 °C was obtained. FTIR and 1H-NMR analysis confirmed the formation of PA52 while the DSC results suggested that the resultant polymer possessed high heat resistance and good crystallizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shalaby SW, Pearce EM, Fredericks RJ, Turi EA (1973) Structure and thermal stability of aliphatic polyoxamides. J Polym Sci Polym Phys Edt 11(1):1–14

    Article  CAS  Google Scholar 

  2. Kurachi K (2011) C1 chemistry-derived high performance polymers. Focus on polyoxamide. Purasuchikkusu Eji 57(1):72–76

    CAS  Google Scholar 

  3. Stamatoff GS, Symons NKJ (1966) US Patent 1966, 3,247,168. US3247168

  4. Gaymans RJ, Venkatraman VS, Schuijer J (1984) Preparation and some properties of nylon-4,2. J Polym Sci Polym Chem Edt 22(6):1373–1382

    Article  CAS  Google Scholar 

  5. Nakagawa T, Nozaki K, Maeda S, Yamamoto T (2015) Polymorphism of poly(nonamethyleneoxamide) crystal. Polymer 57:99–104. doi:10.1016/j.polymer.2014.12.022

    Article  CAS  Google Scholar 

  6. Nakagawa T, Maeda S, Nozaki K, Yamamoto T (2014) Crystal structure of an aliphatic polyoxamide containing methyl side-groups: poly(2-methyl-1,8-octamethyleneoxamide). Polymer 55(9):2254–2261. doi:10.1016/j.polymer.2014.03.009

    Article  CAS  Google Scholar 

  7. Vogl O, Knight AC (1968) Polyoxamides. I. Preparation and characterization of cyclic oxamides. Macromolecules 1(4):311–315. doi:10.1021/ma60004a006

    Article  CAS  Google Scholar 

  8. Chatani Y, Ueda Y, Tadokoro H, Deits W, Vogl O (1978) Structure of poly(hexamethylene oxamide) [nylon 62]. Macromolecules 11(4):636–638. doi:10.1021/ma60064a003

    Article  CAS  Google Scholar 

  9. Dickstein W, Vogl O (1984) Regular copolyamides. IX. Some aliphatic aromatic copolyoxamides. J Macromol Sci Chem A21(6–7):847–857. doi:10.1080/00222338408077247

    Article  CAS  Google Scholar 

  10. Wang J, Nomura R, Endo T (1997) One-pot syntheses of water-soluble poly(oxamide)s. Polym Bull (Berlin) 38(2):125–132. doi:10.1007/s002890050028

    Article  CAS  Google Scholar 

  11. Casas MT, Armelin E, Aleman C, Puiggali J (2002) On the crystalline structure of even polyoxalamides. Macromolecules 35(23):8781–8787. doi:10.1021/ma020869

    Article  CAS  Google Scholar 

  12. Franco L, Subirana JA, Puiggalí J (1998) Structure and morphology of odd polyoxamides [nylon 9,2]. A new example of hydrogen-bonding interactions in two different directions. Macromolecules 31(12):3912–3924. doi:10.1021/ma971599z

    Article  CAS  Google Scholar 

  13. Maeda S, Kurachi K, Okushita H, Hanaoka Y, Yabu N, Nakagawa T (2012) WO 2012036303. WO2012036303A1

  14. Kurachi K, Hanaoka Y, Maeda S, Okushita H (2012) JP Patent 2012072200. JP2012072200A

  15. Vogl O, Knight AC (1968) Polyoxamides. II. Polymerization of cyclic diamides. Macromolecules 1(4):315–318. doi:10.1021/ma60004a007

    Article  CAS  Google Scholar 

  16. Chang HJ, Vogl O (1977) Regular copolyamides. II. Preparation and characterization of regular aliphatic copolyoxamides. J Polym Sci Polym Chem Edt 15(5):1043–1060. doi:10.1002/pol.1977.170150503

    Article  CAS  Google Scholar 

  17. Chang HJ, Vogl O (1977) Regular copolyamides. I. A facile method for the preparation of diamine-oxamides. J Polym Sci Polym Chem Edt 15(2):311–322. doi:10.1002/pol.1977.170150205

    Article  CAS  Google Scholar 

  18. Grossman S, Vogl O (1980) Regular copolyamides by solution and liquid-liquid interfacial polymerization. Org Coat Plast Chem 42:116–121

    CAS  Google Scholar 

  19. Okushita H, Kurachi K, Shimokawa M (2008) WO2008123531. WO2008123531A1

  20. Kind S, Wittmann C (2011) Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol 91(5):1287–1296. doi:10.1007/s00253-011-3457-2

    Article  CAS  Google Scholar 

  21. Ikeda N, Miyamoto M, Adachi N, Nakano M, Tanaka T, Kondo A (2013) Direct cadaverine production from cellobiose using β-glucosidase displaying Escherichia coli. AMB Expr 3(1):67/61–67/67. doi:10.1186/2191-0855-3-67

    Article  Google Scholar 

  22. Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9):2130–2135. doi:10.1271/bbb.60699

    Article  CAS  Google Scholar 

  23. Ma W, Cao W, Zhang H, Chen K, Li Y, Ouyang P (2015) Enhanced cadaverine production from l-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnol Lett 37(4):799–806. doi:10.1007/s10529-014-1753-5

    Article  CAS  Google Scholar 

  24. Matsushima Y, Hirasawa T, Shimizu H (2016) Enhancement of 1,5-diaminopentane production in a recombinant strain of Corynebacterium glutamicum by Tween 40 addition. J Gen Appl Microbiol 62(1):42–45. doi:10.2323/jgam.62.42

    Article  CAS  Google Scholar 

  25. Toray (2012). http://www.toray.com/news/rd/nr120213.html. Accessed 10 Sept 2016

  26. Cathay (2012). http://www.cathaybiotech.com/en/products/diamine. Accessed 10 Sept 2016

  27. Kind S, Neubauer S, Becker J, Yamamoto M, Voelkert M, von Abendroth G, Zelder O, Wittmann C (2014) From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 25:113–123. doi:10.1016/j.ymben.2014.05.007

    Article  CAS  Google Scholar 

  28. Demirel E, Durmaz H, Hizal G, Tunca U (2016) A route toward multifunctional polyurethanes using triple click reactions. J Polym Sci Part A Polym Chem 54(4):480–486

    Article  CAS  Google Scholar 

  29. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee H-I, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Part B 51(1):197–207. doi:10.1080/00222348.2011.583193

    Article  CAS  Google Scholar 

  30. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4, 4′-{1, 4-phenylenebis [methylylidenenitrilo]} diphenol. Polym Bull 60(5):609–616

    Article  CAS  Google Scholar 

  31. Reddy KR, Raghu AV, Jeong HM, Siddaramaiah (2009) Synthesis and characterization of pyridine-based polyurethanes. Des Monomers Polym 12(2):109–118

    Article  CAS  Google Scholar 

  32. Khan MU, Reddy KR, Snguanwongchai T, Haque E, Gomes VG (2016) Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym Sci 294(10):1599–1610

    Article  CAS  Google Scholar 

  33. Lee YR, Kim SC, H-i Lee, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19(1):66–71

    Article  CAS  Google Scholar 

  34. Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J Appl Polym Sci 104(4):2743–2750

    Article  CAS  Google Scholar 

  35. Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51

    Article  CAS  Google Scholar 

  36. Sacchi A, Di Landro L, Pegoraro M, Severini F (2004) Morphology of isotactic polypropylene–polyamide 66 blends and their mechanical properties. Eur Polym J 40(8):1705–1713

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, the Fundamental Research Funds for the Central Universities (2232015A3-06, 2232015A3-01), and Shanghai Natural Science Foundation (15ZR1400100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhu or Yong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Mutua, F.N., Dong, Y. et al. Bio-based poly(pentamethylene oxamide) synthesized by spray/solid-state polycondensation. Polym. Bull. 75, 121–134 (2018). https://doi.org/10.1007/s00289-017-2023-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2023-1

Keywords

Navigation