Skip to main content
Log in

Effect of the ionized carboxyl group on the water compatibility and the antifungal activity of the benzimidazole-grafted polyurethane

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Two series of polyurethane (PU) containing 2,2-bis(hydroxymethyl)propanoic acid (DMPA) and the grafted benzimidazole (BI) were prepared to compare their antifungal activities. The DMPA carboxyl group of BN series was completely ionized using a strong base (NaOH) and the DMPA carboxyl group of BT series was partly ionized by a weak base (trimethylamine). The BN series exhibited a faster decrease in maximum tensile strength and strain at break compared to the BT series. The fully ionized DMPA carboxyl group of BN series severely affected the thermal and mechanical properties. Finally, the BN series demonstrated a complete suppression of fungal growth (Chaetomium globosum) whereas unmodified PU and the BT series could not fully suppress the growth of fungi at the same BI content. Therefore, the complete ionization of DMPA carboxyl group played an important role in the antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spontak RJ, Patel NP (2000) Thermoplastic elastomers: fundamentals and applications. Curr Opin Colloid Interface 5:333–340

    Article  Google Scholar 

  2. Chen LW, Lin JR (1998) Study on shape-memory behavior of polyether-based polyurethanes. II. Influence of soft-segment molecular weight. J Appl Polym Sci 69:1575–1586

    Article  Google Scholar 

  3. Petrović ZS, Ferguson J (1991) Polyurethane elastomers. Prog Polym Sci 16:695–836

    Article  Google Scholar 

  4. Chung YC, Park HS, Choi JW, Chun BC (2012) Characterization and low temperature test of the flexibly crosslinked polyurethane copolymer by poly(dimethylsiloxane). High Perform Polym 24:200–209

    Article  CAS  Google Scholar 

  5. Chung YC, Jung IH, Choi JW, Chun BC (2014) Characterization and proof testing of the halochromic shape memory polyurethane. Polym Bull 71:1153–1171

    Article  CAS  Google Scholar 

  6. Chung YC, Choi JW, Lee SH, Chun BC (2011) Investigation of fluorescent shape memory polyurethane grafted with various dyes. Bull Korean Chem Soc 32:2988–2996

    Article  Google Scholar 

  7. Tischer M, Pradel G, Ohlsen K, Holzgrabe U (2012) Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions. Chem Med Chem 7:22–31

    Article  CAS  Google Scholar 

  8. Kenawy ER, Abdel-Hay FI, El-Magd AA, Mahmoud Y (2006) Biologically active polymers: VII. Synthesis and antimicrobial activity of some crosslinked copolymers with quaternary ammonium and phosphonium groups. React Funct Polym 66:419–429

    Article  CAS  Google Scholar 

  9. Rogalskyy S, Bardeau JF, Tarasyuk O, Fatyeyeva K (2012) Fabrication of new antifungal polyamide-12 material. Polym Int 61:686–691

    Article  CAS  Google Scholar 

  10. Vlad S, Tanase C, Macocinschi D, Ciobanu C, Balaes T, Filip D, Gostin IN, Gradinaru LM (2012) Antifungal behavior of polyurethane membrane with zinc oxide nanoparticles. Dig J Nanomater Biosci 7:51–58

    Google Scholar 

  11. Meng N, Zhou NL, Zhang SQ, Shen J (2009) Synthesis and antifungal activities of polymer/montmorillonite–terbinafine hydrochloride nanocomposite films. Appl Clay Sci 46:136–140

    Article  CAS  Google Scholar 

  12. Paladini F, Cooper IR, Pollini M (2014) Development of antibacterial and antifungal silver-coated polyurethane foams as air filtration units for the prevention of respiratory diseases. J Appl Microbiol 116:710–717

    Article  CAS  Google Scholar 

  13. Napoli M, Saturnino C, Cianciulli EI, Varcamonti M, Zanfardino A, Tommonaro G, Longo P (2013) Silver(I) N-heterocyclic carbene complexes: synthesis, characterization and antibacterial activity. J Organomet Chem 725:46–53

    Article  CAS  Google Scholar 

  14. Patel RV, Patel PK, Kumari P, Rajani DP, Chikhalia KH (2012) Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents. Eur J Med Chem 53:41–51

    Article  CAS  Google Scholar 

  15. Ansari KF, Lal C (2009) Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives. Eur J Med Chem 44:4028–4033

    Article  CAS  Google Scholar 

  16. Sheehan DJ, Hitchcock CA, Sibley CM (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12:40–79

    CAS  Google Scholar 

  17. Song S, Kim J, Shim JY, Kim G, Lee BH, Jin Y, Park SH, Kim I, Lee K, Suh H (2012) Synthesis and characterization of dimethyl-benzimidazole based low bandgap copolymers for OPVs. Synth Met 162:988–994

    Article  CAS  Google Scholar 

  18. Song S, Park SH, Jin Y, Kim I, Lee K, Suh H (2012) Conjugated copolymers based on dihexyl-benzimidazole moiety for organic photovoltaics. Polymer 51:5385–5391

    Article  Google Scholar 

  19. Choi H, Chung IS, Hong K, Park CE, Kim SY (2008) Soluble polyimides from unsymmetrical diamine containing benzimidazole ring and trifluoromethyl pendent group. Polymer 49:2644–2649

    Article  CAS  Google Scholar 

  20. Linlin M, Mishra AK, Kim NH, Lee JH (2012) Poly(2,5-benzimidazole)–silica nanocomposite membranes for high temperature proton exchange membrane fuel cell. J Membr Sci 411:91–98

    Article  Google Scholar 

  21. Kim SK, Kim KH, Park JO, Kim K, Ko T, Choi SW, Pak C, Chang H, Lee JC (2013) Highly durable polymer electrolyte membranes at elevated temperature: cross-linked copolymer structure consisting of poly(benzoxazine) and poly(benzimidazole). J Power Sour 226:346–353

    Article  CAS  Google Scholar 

  22. Petrovic ZS, Javni I, Divjakovic VJ (1998) Structure and physical properties of segmented polyurethane elastomers containing chemical crosslinks in the hard segment. J Polym Sci Pol Phys 36:221–235

    Article  CAS  Google Scholar 

  23. Sekkar V, Gopalakrishnan S, Devi KA (2003) Studies on allophanate–urethane networks based on hydroxyl terminated polybutadiene: effect of isocyanate type on the network characteristics. Eur Polym J 39:1281–1290

    Article  CAS  Google Scholar 

  24. Sekkar V, Rama Rao M, Krishinamurthy VN, Jane SR (1996) Modeling of polyurethane networks based on hydroxy-terminated polybutadiene and poly(12-hydroxy stearic acid–co–TMP) ester polyol: correlation of network parameters with mechanical properties. J Appl Polym Sci 62:2317–2327

    Article  CAS  Google Scholar 

  25. Freij-Larsson C, Wesslen B (1993) Grafting of polyurethane surfaces with poly(ethylene glycol). J Appl Polym Sci 50:345–352

    Article  CAS  Google Scholar 

  26. Archambault JG, John L (2004) Protein resistant polyurethane surfaces by chemical grafting of PEO: amino-terminated PEO as grafting reagent. Colloid Surface B 39:9–16

    Article  CAS  Google Scholar 

  27. Tan K, Obendorf SK (2006) Surface modification of microporous polyurethane membrane with poly(ethylene glycol) to develop a novel membrane. J Mem Sci 274:150–158

    Article  CAS  Google Scholar 

  28. Alves P, Coelho JFJ, Haack J, Rota A, Bruinink A, Gil MH (2009) Surface modification and characterization of thermoplastic polyurethane. Eur Polym J 45:1412–1419

    Article  CAS  Google Scholar 

  29. Huang J, Xu W (2010) Zwitterionic monomer graft copolymerization onto polyurethane surface through a PEG spacer. Appl Surf Sci 256:3921–3927

    Article  CAS  Google Scholar 

  30. Chung YC, Kim HY, Choi JW, Chun BC (2015) Preparation of water-compatible antifungal polyurethane with grafted benzimidazole as the antifungal agent. J Appl Polym Sci 132:41676–41684

    Article  Google Scholar 

  31. Chung YC, Choi JW, Chung HM, Chun BC (2012) The MDI-mediated lateral crosslinking of polyurethane copolymer and the impact on tensile properties and shape memory effect. Bull Korean Chem Soc 33:692–694

    Article  CAS  Google Scholar 

  32. Choi T, Weksler J, Padsalgikar A, Runt J (2010) Microstructural organization of polydimethylsiloxane soft segment polyurethanes derived from a single macrodiol. Polymer 51:4375–4382

    Article  CAS  Google Scholar 

  33. Russo P, Lavorgna M, Piscitelli F, Acierno D, Di Maio L (2013) Thermoplastic polyurethane films reinforced with carbon nanotubes: the effect of processing on the structure and mechanical properties. Eur Polym J 49:379–388

    Article  CAS  Google Scholar 

  34. Chung YC, Kim HY, Yu JH, Chun BC (2015) Impact of cholesterol grafting on molecular interactions and low temperature flexibility of polyurethanes. Macromol Res 23:350–359

    Article  CAS  Google Scholar 

  35. Chung YC, Lee BH, Jo SH, Chun BC (2015) Preparation and characterization of polyurethane copolymer grafted with polystyrene side chains. Polym Plast Technol 54:1066–1076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01014308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Chul Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, YC., Kim, H.Y., Choi, J.W. et al. Effect of the ionized carboxyl group on the water compatibility and the antifungal activity of the benzimidazole-grafted polyurethane. Polym. Bull. 74, 3721–3737 (2017). https://doi.org/10.1007/s00289-017-1916-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1916-3

Keywords

Navigation