Skip to main content

Advertisement

Log in

Mechanically robust room-temperature self-healing waterborne polyurethane with antimicrobial properties constructed through multiple dynamic bonds

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, 2,6-diacetylpyridine dioxime was synthesized from 2,6-diacetylpyridine and hydroxylamine hydrochloride as raw materials and bonded into the molecular chain of waterborne polyurethane as an alcohol chain extender, Subsequent addition of Cu2+ interacted with the Schiff base structure in the WPU molecular chain to generate room-temperature self-healing polymeric materials with multiple dynamic bonds based on ligand bonds, oxime carbamates, and hydrogen bonds. Due to the synergistic effect of multiple dynamic bonds, DWPU-Cu0.25 exhibited excellent mechanical properties (tensile strength of 11.9 MPa and elongation at break of 1620%) and excellent room temperature self-healing ability (healing efficiencies of 89.1% and 95.8% for elongation at break and tensile strength, after 72 h of room temperature healing). Additionally, antibacterial experiments showed that DWPU-Cu films can release copper ions and create antibacterial zones around polyurethane films, demonstrating their use in the field of antibacterial coatings. By introducing covalent bonds and non-covalent dynamic bonds into the waterborne polyurethane to improve the healing ability of the material, and this internal self-healing method avoids the disadvantages of the external self-healing method, such as irreversibility, complex operation and poor compatibility. This self-healing mechanism based on the dynamic bond inside the material can not only realize repeated self-healing, but also have excellent basic properties, and can also expand other functions on the basis of self-repair, and realize the application of multifunctional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu XH, Hong W, Chen XD (2020) Polymers 12:2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jia RP, Hui Z, Huang ZX, Liu X, Zhao C, Wang DY, Wu DD (2020) New J Chem 44:19759–19768

    Article  CAS  Google Scholar 

  3. Kang SY, Ji ZX, Tseng LF, Turner SA, Villanueva DA, Johnson R, Albano A, Langer R (2018) Adv Mater 30:1706237

    Article  Google Scholar 

  4. Yang M, Li YC, Dang XG (2022) Environ Res 206:112266

    Article  CAS  PubMed  Google Scholar 

  5. Lei L, Zhang YH, Ou CB, Xia ZB, Zhong L (2016) Prog Org Coat 92:85–94

    Article  CAS  Google Scholar 

  6. Huang SS, Liu GJ, Zhang KK, Hu H, Wang J, Miao L, Tabrizizadeh T (2019) Chem Eng J 360:445–451

    Article  CAS  Google Scholar 

  7. Chen MX, Li YY, Liu SY, Feng ZX, Wang H, Yang DJ, Guo WM, Yuan ZG, Gao S, Zhang Y, Zha KK, Huang B, Wei F, Sang XY, Tian QY, Yang X, Sui X, Zhou YX, Zheng YF, Guo QY (2021) Bioact Mater 6:1932–1944

    CAS  PubMed  Google Scholar 

  8. Zhu MSQ, Liu J, Gan LH, Long MN (2020) Eur Polym J 129:109651

    Article  CAS  Google Scholar 

  9. Yang HI, Kim DM, Yu HC, Chung CM (2016) ACS Appl Mater Interfaces 8:11070–11075

    Article  CAS  PubMed  Google Scholar 

  10. Peng HY, Du XS, Cheng X, Wang HB, Du ZL (2021) Prog Org Coat 151:106081

    Article  CAS  Google Scholar 

  11. Zhang N, Pan ZC, Li C, Wang J, Jin Y, Song SF, Pan MW, Yuan JF (2022) Polymer 246:124778

    Article  CAS  Google Scholar 

  12. Han TY, Lin CH, Lin YS, Yeh CM, Chen YA, Li HY, Xiao YT, Chang JW, Su AC, Jeng US, Chou HH (2022) Chem Eng J 438:135592

    Article  CAS  Google Scholar 

  13. Sheng YM, Wang MH, Zhang KP, Wu ZY, Chen YX, Lu X (2021) Chem Eng J 426:131883

    Article  CAS  Google Scholar 

  14. Xiao Y, Huang HH, Peng XH (2017) RSC Adv 7:20093–20100

    Article  CAS  Google Scholar 

  15. Liu J, Tan CSY, Yu ZY, Li N, Abell C, Scherman OA (2017) Adv Mater 29:1605325

    Article  Google Scholar 

  16. Mei JF, Jia XY, Lai JC, Sun Y, Li CH, Wu JH, Cao Y, You XZ, Bao ZN (2016) Macromol Rapid Commun 37:1667–1675

    Article  CAS  PubMed  Google Scholar 

  17. Burattini S, Greenland BW, Merino DH, Weng WG, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) J Am Chem Soc 132:12051–12058

    Article  CAS  PubMed  Google Scholar 

  18. Wang ZF, An G, Zhu Y, Liu XM, Chen YH, Wu HK, Wang YJ, Shi XT, Mao CB (2019) Mater Horiz 6:733–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hou JB, Zhang XQ, Wu D, Feng JF, Ke D, Li BJ, Zhang S (2019) ACS Appl Mater Interfaces 11:12105–12113

    Article  CAS  PubMed  Google Scholar 

  20. Peng Y, Yang Y, Wu Q, Wang SX, Huang GS, Wu JR (2018) Polymer 157:172–179

    Article  CAS  Google Scholar 

  21. Fang YL, Du XS, Jiang YX, Du ZL, Pan PT, Cheng X, Wang HB (2018) ACS Sustain Chem Eng 6:14490–14500

    Article  CAS  Google Scholar 

  22. Imbernon L, Oikonomou EK, Norvez S, Leibler L (2015) Polym Chem 6:4271–4278

    Article  CAS  Google Scholar 

  23. Liu MC, Zhong J, Li ZJ, Rong JC, Yang K, Zhou JY, Shen L, Gao F, Huang XL, He HF (2020) Eur Polym J 124:109475

    Article  CAS  Google Scholar 

  24. Chen Y, Tang ZH, Zhang XH, Liu YJ, Wu SW, Guo BC (2018) ACS Appl Mater Interfaces 10:24224–24231

    Article  CAS  PubMed  Google Scholar 

  25. Cash JJ, Kubo T, Bapat AP, Sumerlin BS (2015) Macromolecules 48:2098–2106

    Article  CAS  Google Scholar 

  26. Xu BW, Han FL, Pei XQ, Zhang SJ, Zhao JB (2021) Ind Eng Chem Res 60:11095–11105

    Article  CAS  Google Scholar 

  27. Liu XJ, Liu X, Li WJ, Ru Y, Li YH, Sun AL, Wei LH (2021) Chem Eng J 410:128300

    Article  CAS  Google Scholar 

  28. Li CH, Zuo JL (2020) Adv Mater 32:1903762

    Article  CAS  Google Scholar 

  29. Zhang WC, Wang MH, Zhou JH, Sheng YM, Xu M, Jiang XL, Ma YH, Lu X (2021) Eur Polym J 156:110614

    Article  CAS  Google Scholar 

  30. Wang MH, Zhou JH, Jiang XL, Sheng YM, Xu M, Lu X (2021) Eur Polym J 146:110257

    Article  CAS  Google Scholar 

  31. Zhang LZ, Guan QB, Shen AO, Neisiany RE, You ZW, Zhu MF (2022) Sci China Chem 65:363–372

    Article  CAS  Google Scholar 

  32. Sai F, Zhang H, Qu J, Wang J, Zhu X, Bai Y, Ye P (2022) Appl Surf Sci 573:151526

    Article  CAS  Google Scholar 

  33. Mohammadi A, Doctorsafaei AH, Burujeny SB, Rudbari HA, Kordestani N, Ayati SA, Najafabadi (2020) Chem Eng J 381:122776

    Article  CAS  Google Scholar 

  34. Zhang LZ, Liu ZH, Wu XL, Guan QB, Chen S, Sun LJ, Guo YF, Wang SL, Song JC, Jeffries EM, He CL, Qing FL, Bao XG, You ZW (2019) Adv Mater 31:1901402

    Article  Google Scholar 

  35. Liu Y, Li ZJ, Zhang ZT, Wang JC, Sun LY, Xie TL (2021) Prog Org Coat 153:106153

    Article  CAS  Google Scholar 

  36. Lou WX, Dai ZD, Jiang PP, Zhang PB, Bao YM, Gao XW, Xia JL, Haryono A (2022) Polym Adv Technol 33:2393–2403

    Article  CAS  Google Scholar 

  37. Wang SY, Ma L, Wang S, Wang YZ, Liu GY, Wang HB (2022) Polym Chem 13:2615–2625

    Article  CAS  Google Scholar 

  38. Zhu JT, Wu ZM, Xiong D, Pan LS, Liu YJ (2019) Prog Org Coat 133:161–168

    Article  CAS  Google Scholar 

  39. Li Q, Ma SQ, Wang S, Liu YL, Taher MA, Wang BB, Huang KF, Xu XW, Han YY, Zhu J (2020) Macromolecules 53(4):1474–1485

    Article  CAS  Google Scholar 

  40. Li Y, Jin Y, Zeng W, Zhou R, Shang X, Shi L, Bai L, Lai C (2023) Prog Org Coat 174:107256

    Article  CAS  Google Scholar 

  41. Wu XZ, Wang JQ, Huang JX, Yang SR (2019) ACS Appl Mater Interfaces 11:7387–7396

    Article  CAS  PubMed  Google Scholar 

  42. Zhang LZ, You ZW (2021) Chin J Polym Sci 39:1281–1291

    Article  CAS  Google Scholar 

  43. Zhang ZJ, Mei HF, Wang Q, Li R, Wei H, Ouyang X (2022) Mater Chem Phys 285:126070

    Article  CAS  Google Scholar 

  44. Laxmi A, Shahzaib S, Khan A, Ghosal F, Zafar M, Alam SAA, Nami, Nishat N (2022) J Polym Res 29:152

    Article  CAS  Google Scholar 

  45. Li QY, Cao L, Wang W, Qin XD, Chen SG (2022) Compos Part A Appl Sci Manuf 163:107213

    Article  CAS  Google Scholar 

  46. Mirmohseni A, Azizi M, Seyed MS, Dorraji (2019) Prog Org Coat 131:322–332

    Article  CAS  Google Scholar 

  47. Jiang S, Wang F, Cao X, Slater B, Wang R, Sun H, Wang H, Shen X, Yao Z (2022) Chemosphere 287:132131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from the Natural Science Foundation of China (NSFC) (No. 21978112) and MOE & SAFEA for the 111 Project (B13025) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingbo Zhang.

Ethics declarations

Conflict of interest

The authors declare that have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Room temperature self-healing waterborne polyurethane based on coordination bonds, oxime carbamates and hydrogen bonds.

2. Waterborne polyurethane film with antibacterial properties against Escherichia coli and Staphylococcus aureus.

3. A novel oxime chain extender 2,6-diacetylpyridine dioxime prepared by the reaction of 2,6-diacetylpyridine with hydroxylamine hydrochloride.

4. Waterborne polyurethane excellent mechanical properties gived by the synergy of various dynamic bonds.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, L., Jiang, P. et al. Mechanically robust room-temperature self-healing waterborne polyurethane with antimicrobial properties constructed through multiple dynamic bonds. J Polym Res 30, 387 (2023). https://doi.org/10.1007/s10965-023-03770-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03770-y

Keywords

Navigation