Skip to main content

Advertisement

Log in

A review on recent researches on polylactic acid/carbon nanotube composites

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

As multifunctional high-performance materials, polylactic acid/carbon nanotube (PLA/CNT) composites are currently of great interest for using in an extensive range of medical and industrial applications. The main focus of the present work, accordingly, is to review the recent developments on PLA/CNT composites. In addition, the dependence of thermal, mechanical, electrical, and rheological properties on the type, aspect ratio, loading, dispersion state, and alignment of CNTs within PLA matrix was reviewed. The discussion of the different properties revealed that the CNTs additive could be an effective method to improve the performance of PLA materials for medical and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lim T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  2. Kaseem M, Hamad K, Park JH, Ko YG (2015) Rheological properties of ABS/wood composites. Eur J Wood Prod 73:701–703

    Article  CAS  Google Scholar 

  3. Kaseem M, Hamad K, Deri F, Ko YG (2015) Material properties of polyethylene/wood composites: a review of recent works. Polym Sci Ser A 57:689–703

    Article  CAS  Google Scholar 

  4. Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: a review of recent works. Polym Sci Ser A 54:165–176

    Article  CAS  Google Scholar 

  5. Garlotta D (2001) A Literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  6. Xu H, Teng CQ, Yu MH (2006) Improvements of thermal property and crystallization behavior of PLLA basedmultiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer 47:3922–3928

    Article  CAS  Google Scholar 

  7. Hong ZK, Zhang PB, He CL, Qiu XY, Liu AX, Chen L, Chen XS, Jing XB (2005) Nano-composite of poly(l-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 26:6296–6304

    Article  CAS  Google Scholar 

  8. Ho CH, Wang CH, Lin CI, Lee YD (2008) Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer 49:3902–3910

    Article  CAS  Google Scholar 

  9. Hamad K, Kaseem M, Deri F, Ko YG (2016) Mechanical properties and compatibility of polylactic acid/polystyrene polymer blend. Mater Lett 164:409–412

    Article  CAS  Google Scholar 

  10. Cele HM, Ojijo V, Chen H, Kumar S, Land K, Joubert T, Villiers MFR, Ray SS (2014) Effect of nanoclay on optical properties of PLA/clay composite films. Polym Test 36:24–31

    Article  CAS  Google Scholar 

  11. Requez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Article  Google Scholar 

  12. Suhr J, Victor P, Ci L, Sreekala S, Zhang X, Nalamasu O (2007) Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat Nanotechnol 2(7):417–421

    Article  CAS  Google Scholar 

  13. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 6:1899–1912

    Article  Google Scholar 

  14. Kaseem M, Hamad K, Ko YG (2016) Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. Eur Polym J 79:36–62

    Article  CAS  Google Scholar 

  15. Shen J, Champagne MF, Gendron R, Guo S (2012) The development of conductive carbon nanotube network in polypropylene-based composites during simultaneous biaxial stretching. Eur Polym J 48:930–939

    Article  CAS  Google Scholar 

  16. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Crystallization behavior of carbon nanotube polylactide nanocomposites. Macromolecules 44:6496–6502

    Article  CAS  Google Scholar 

  17. Papageorgiou GZ, Terzopoulou Z, Achilias DS, Bikiaris DN, Kapnisti M, Gournis D (2013) Biodegradable poly(ethylene succinate) nanocomposites. Effect of filler type on thermal behaviour and crystallization kinetics. Polymer 54:4604–4616

    Article  CAS  Google Scholar 

  18. Brzeziński M, Biela T (2014) Polylactide nanocomposites with functionalized carbon nanotubes and their stereocomplexes: a focused review. Mater Lett 121:244–250

    Article  Google Scholar 

  19. Vicentini N, Gatti T, Salice P, Scapin G, Marega C, Filippini F, Menna E (2015) Covalent functionalization enables good dispersion and anisotropic orientation of multi-walled carbon nanotubes in a poly(l-lactic acid) electrospun nanofibrous matrix boosting neuronal differentiation. Carbon 95:725–730

    Article  CAS  Google Scholar 

  20. Kong Y, Yuan J, Qiu J (2012) Preparation and characterization of aligned carbon nanotubes/polylactic acid composite fibers. Phys B 407:2451–2457

    Article  CAS  Google Scholar 

  21. Li J, Song Z, Gao L, Shan H (2016) Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method. Polym Bull 73:2121–2128

    Article  CAS  Google Scholar 

  22. Chen C, He BX, Wang SL, Yuan GP, Zhang L (2015) Unexpected observation of highly thermostable transcrystallinity of poly(lactic acid) induced by aligned carbon nanotubes. Eur Polym J 63:177–185

    Article  CAS  Google Scholar 

  23. Chen GX, Kim HS, Park BH, Yoon JS (2005) Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(l-lactic acid). J Phys Chem B 109:22237–22243

    Article  CAS  Google Scholar 

  24. Seligra PG, Nuevo F, Lamanna M, Famá L (2013) Covalent grafting of carbon nanotubes to PLA in order to improve compatibility. Compos B Eng 46:61–68

    Article  CAS  Google Scholar 

  25. Amirian M, Chakoli AN, Cai W, Sui J (2013) Effect of functionalized multiwalled carbon nanotubes on thermal stability of poly (l-lactide) biodegradable polymer. Sci Iran 20:1023–1027

    Google Scholar 

  26. Xu J, Chen T, Yang C, Li Z, Mao Y, Zeng B, Hsiao B (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008

    Article  CAS  Google Scholar 

  27. Wu CS, Liao HT (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48:4449–4458

    Article  CAS  Google Scholar 

  28. Shieh YT, Liu GL (2007) Effects of carbon nanotubes on crystallization and melting behavior of poly(L-lactide) via DSC and TMDSC studies. J Polym Sci Part B Polym Phys 45:1870–1881

    Article  CAS  Google Scholar 

  29. Zhao Y, Qiu Z, Yang W (2009) Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide). Compos Sci Technol 69:627–632

    Article  CAS  Google Scholar 

  30. Chen HM, Feng CX, Zhang WB, Yang JH, Huang T, Zhang N, Wang Y (2013) Hydrolytic degradation behavior of poly(l-lactide)/carbon nanotubes nanocomposites. Polym Degrad Stab 98:198–208

    Article  CAS  Google Scholar 

  31. Fojt MO, Glatz YG, Lizundia E, Diener L, Sarasua JR, Bruinink A (2014) From implantation to degradation -are poly(L-lactide)/multiwall carbon nanotube composite materials really cytocompatible? Nanomedicine 10:1041–1051

    Article  Google Scholar 

  32. Wu D, Wu L, Zhou W, Zhang M, Yang T (2010) Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym Eng Sci 50:1721–1733

    Article  CAS  Google Scholar 

  33. Kumar B, Castro M, Feller JF (2012) Poly(lactic acid)-multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sens Actuators B 161:621–628

    Article  CAS  Google Scholar 

  34. Kim HS, Park BH, Yoon JS, Jin HJ (2007) Thermal and electrical properties of poly(l-lactide)-graft-multiwalled carbon nanotube composites. Eur Polym J 43:1729–1735

    Article  CAS  Google Scholar 

  35. Kuan CF, Kuan HC, Ma CCM, Chen CH (2008) Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J Phys Chem Solids 69:1395–1398

    Article  CAS  Google Scholar 

  36. Moon SI, Jin F, Lee CJ, Tsutsumi S, Hyon SH (2005) Novel carbon nanotube/poly(l-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity. Macromol Symp 224:287–295

    Article  CAS  Google Scholar 

  37. Kim SY, Shin KS, Lee SH, Kim KW, Youn JR (2010) Unique crystallization behavior of multi-walled carbon nanotube filled poly(lactic acid). Fiber Polym 11:1018–1023

    Article  CAS  Google Scholar 

  38. Lizundia E, Oleaga A, Salazar A, Sarasua JR (2012) Nano- and microstructural effects on thermal properties of poly (L-lactide)/multi-wall carbon nanotube composites. Polymer 53:2412–2421

    Article  CAS  Google Scholar 

  39. Zhao Y, Qiu Z, Yan S, Yang W (2011) Crystallization behavior of biodegradable poly(L-lactide)/multiwalled carbon nanotubes nanocomposites from the amorphous state. Polym Eng Sci 51:564–1573

    Google Scholar 

  40. Kong Y, Yuan J, Wang Z, Qiu J (2012) Study on the preparation and properties of aligned carbon nanotubes/polylactide composite fibers. Polym Compos 33:1613–1619

    Article  CAS  Google Scholar 

  41. Park SH, Lee SG, Kim SH (2013) Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Compos A 46:11–18

    Article  CAS  Google Scholar 

  42. Bautista-Del-Ángel JE, Morales-Cepeda AB, Lozano-Ramírez T, Sanchez S, Karami S, Lafleur P (2016) Enhancement of crystallinity and toughness of poly (l-lactic acid) influenced by Ag nanoparticles processed by twin screw extruder. Polym Compos. doi:10.1002/pc.24217

    Google Scholar 

  43. Liao GY, Zhou XP, Chen L, Zeng XY, Xie XL, Mai YW (2012) Electrospun aligned PLLA/PCL/functionalised multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties. Compos Sci Technol 72:248–255

    Article  CAS  Google Scholar 

  44. Gupta A, Woods MD, Illingworth KD, Schafer I, Cady C, Filip P, Amin EI (2013) Single walled carbon nanotube composites for bone tissue engineering. J Orthop Res 31:1374–1381

    Article  CAS  Google Scholar 

  45. Gupta A, Main BJ, Taylor BL, Gupta M, Whitworth CA, Cady C, Freeman JW, Amin EI (2014) In vitro evaluation of three-dimensional singlewalled carbon nanotube composites for bone tissue engineering. J Biomed Mater Res A 102:4118–4126

    Article  Google Scholar 

  46. Wu D, Wu L, Zhou W, Sun Y, Zhang M (2010) Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci B Polym Phys 48:479–489

    Article  CAS  Google Scholar 

  47. Arenaza MD, Fojt MO, Sarasua JR, Meaurio E, Meyer F, Raquez JM, Dubois P, Bruinink A (2015) Pyrene-end-functionalized poly(L-lactide) as an efficient carbon nanotube dispersing agent in poly(L-lactide): mechanical performance and biocompatibility study. Biomed Mater 10:045003. doi:10.1088/1748-6041/10/4/045003

    Article  Google Scholar 

  48. Gorrasi G, Milone C, Piperopoulos E, Lanza M, Sorrentino A (2013) Hybrid clay mineral-carbon nanotube-PLA nanocomposite films. Preparation and photodegradation effect on their mechanical, thermal and electrical properties. Appl Clay Sci 71:49–54

    Article  CAS  Google Scholar 

  49. Yoon JT, Jeong YG, Lee SC, Min BG (2009) Influences of poly(lactic acid)- grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol 20:631–638

    Article  CAS  Google Scholar 

  50. Mat-Desa MSZ, Hassan A, Arsad A, Mohammad NNB (2014) Mechanical properties of poly(lactic acid)/multiwalled carbon nanotubes nanocomposites. Mater Res Innov 18:S6-14–S6-17

    Article  Google Scholar 

  51. Ramontja J, Ray SS, Pillai SK, Luyt AS (2009) High-performance carbon nanotube-reinforced bioplastic. Macromol Mater Eng 294:839–846

    Article  CAS  Google Scholar 

  52. Amirian M, Chakoli AN, Sui JH, Cai W (2013) Thermo-mechanical properties of MWCNT-g-poly (L-lactide)/poly (L-lactide) nanocomposites. Polym Bull 70:2741–2754

    Article  CAS  Google Scholar 

  53. Chiu WM, Chang YA, Kuo HY, Lin MH, Wen HC (2008) A study of carbon nanotubes/biodegradable plastic polylactic acid composites. Appl polym sci 108:3024–3030

    Article  CAS  Google Scholar 

  54. Li HS, Chang CM, Hsu KY, Liu YL (2012) Poly(lactide)-functionalized and Fe3O4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly(lactide) films and electrospun nanofibers. J Mater Chem 22:4855–4860

    Article  CAS  Google Scholar 

  55. Zhang W, Ning N, Gao Y, Xu F, Fu Q (2013) Stretching induced interfacial crystallization and property enhancement of poly(L-lactide)/single-walled carbon nanotubes fibers. Compos Sci Technol 83:47–53

    Article  CAS  Google Scholar 

  56. Mina MF, Beg MDH, Islam MR, Nizam A, Alam AKMM, Yunus RM (2014) Structures and properties of injection-molded biodegradable poly(lactic acid) nanocomposites prepared with untreated and treated multiwalled carbon nanotubes. Polym Eng Sci 54:317–326

    Article  CAS  Google Scholar 

  57. Lin WY, Shih YF, Lin CH, Lee CC, Yu YH (2013) The preparation of multi-walled carbon nanotube/poly(lactic acid) composites with excellent conductivity. J Taiwan Inst Chem E 44:489–496

    Article  CAS  Google Scholar 

  58. Alam J, Alam M, Arockiasamy LD, Shanmugharaj AM, Raja M (2014) Development of plasticized PLA/NH2-CNTs nanocomposite: potential of NH2-CNTs to improve electroactive shape memory properties. Polym Compos 35:2129–2136

    Article  CAS  Google Scholar 

  59. Lizundia E, Sarasua JR, Angelo F, Orlacchio A, Martino S, Kenny JM, Armentano I (2012) Biocompatible poly(L-lactide)/MWCNT nanocomposites: morphological characterization, electrical properties, and stem cell interaction. Macromol Biosci 12:870–881

    Article  CAS  Google Scholar 

  60. Li Q, Zhou Q, Deng D, Yu Q, Gu L, Gong K, Xu K (2013) Enhanced thermal and electrical properties of poly (d, l-lactide)/multi-walled carbon nanotubes composites by insitu polymerization. Trans Nonferrous Metal Soc Chin 23:1421–1427

    Article  CAS  Google Scholar 

  61. Kobashi K, Villmow T, Andres T, Poetschke P (2008) Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sens Actuators B 134:787–795

    Article  CAS  Google Scholar 

  62. Yang T, Wu D, Lu L, Zhou W, Zhang M (2011) Electrospinning of polylactide and its composites with carbon nanotubes. Polym Compos 32:1280–1288

    Article  CAS  Google Scholar 

  63. Kim HS, Chae YS, Park BH, Yoon JS, Kang M, Jin HJ (2008) Thermal and electrical conductivity of poly(L-lactide)/multiwalled carbon nanotube nanocomposites. Curr Appl Phys 8:803–806

    Article  Google Scholar 

  64. Antar Z, Feller JF, Noel H, Glouannec P, Elleuch K (2012) Thermoelectric behaviour of melt processed carbon nanotube/graphite/poly(lactic acid) conductive biopolymer nanocomposites (CPC). Mater Lett 67:210–214

    Article  CAS  Google Scholar 

  65. Sullivan EM, Karimineghlan P, Naragh M, Gerhardt RA, Kalaitzidou K (2016) The effect of nanofiller geometry and compounding method on polylactic acid nanocomposite films. Eur Polym J 77:31–42

    Article  CAS  Google Scholar 

  66. Wu D, Wu L, Zhang M, Zhao Y (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93:1577–1584

    Article  CAS  Google Scholar 

  67. Xu Z, Niu Y, Yang L, Xie W, Li H, Gan Z, Wang Z (2010) Morphology, rheology and crystallization behavior of polylactide composites prepared through addition of five-armed star polylactide grafted multiwalled carbon nanotubes. Polymer 51:730–737

    Article  CAS  Google Scholar 

  68. Gorrasi G, Sorrentino A (2013) Photo-oxidative stabilization of carbon nanotubes on polylactic acid. Polym Degrad Stab 98:963–971

    Article  CAS  Google Scholar 

  69. Krul LP, Volozhyn AI, Belov DA, Poloiko NA, As A, Zhdanok SA, Solntsev AP, Krauklis AV, Zhukova IA (2007) Nanocomposites based on poly-D, L-lactide and multiwall carbon nanotubes. Biomol Eng 24:93–95

    Article  CAS  Google Scholar 

  70. Anaraki NA, Roshanfekr L, Irani M, Haririan I (2015) Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery. J Appl Polym Sci. doi:10.1002/APP.41286

    Google Scholar 

  71. Wei XP, Luo YL, Xu F, Chen YS (2016) Sensitive conductive polymer composites based on polylactic acid filled with multiwalled carbon nanotubes for chemical vapor sensing. Syn Met 215:216–222

    Article  CAS  Google Scholar 

  72. Mei F, Zhong J, Yang X, Quyang X, Zhang S, Hu X, Ma Q, Lu J, Ruo S, Deng X (2007) Improved biological characteristics of poly(L-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules 8:3729–3735

    Article  CAS  Google Scholar 

  73. Mai F, Habibi Y, Raquez JM, Dubois P, Feller JF, Peijs T, Bilotti E (2013) Poly(lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer 54:6818–6823

    Article  CAS  Google Scholar 

  74. Feng J, Cai W, Sui J, Li Z, Wan J, Chakoli AN (2008) Poly(L-lactide) brushes on magnetic multiwalled carbon nanotubes by in situ ring-opening polymerization. Polymer 49:4989–4994

    Article  CAS  Google Scholar 

  75. Hapuarachchi TD, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fiber reinforced composites. Compos A 41:954–963

    Article  Google Scholar 

  76. Bourbigot S, Fontaine G, Gallos A, Bellayer S (2011) Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polym Adv Technol 22:30–37

    Article  CAS  Google Scholar 

  77. Alam J, Alam M, Raja M, Abduljaleel Z, Dass LA (2014) MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behavior. Int J Mol Sci 15:19924–19937

    Article  CAS  Google Scholar 

  78. Gupta A, Liberati TA, Verhulst SJ, Main BJ, Roberts MH, Potty AGR, Pylawka TK, Amin SF (2015) Biocompatibility of single-walled carbon nanotube composites for bone regeneration. Bone Joint Res 5:70–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gun Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaseem, M., Hamad, K., Deri, F. et al. A review on recent researches on polylactic acid/carbon nanotube composites. Polym. Bull. 74, 2921–2937 (2017). https://doi.org/10.1007/s00289-016-1861-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1861-6

Keywords

Navigation