Skip to main content
Log in

Unique crystallization behavior of multi-walled carbon nanotube filled poly(lactic acid)

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Although poly(lactic acid) (PLA) possesses many desirable properties such as miscible, reproducible, nontoxic, and biodegradable properties, extremely slow crystallization rate is a weak point in comparison with other commercial thermoplastics. Addition of nucleating agents can be a good method to increase the overall crystallization rate and multi-walled carbon nanotube (MWCNT) is generally known as a good nucleating agent as well as reinforcement. MWCNT reinforced PLA nanocomposites were prepared by melt blending and the unique nucleation and crystallization behaviors of pure PLA and MWCNT/PLA nanocomposites were investigated. Slow homogeneous nucleation and crystallization behavior of the pure PLA and fast heterogeneous crystallization behavior of MWCNT/PLA nanocomposites were observed. Crystallization behavior of MWCNT/PLA nanocomposites was irrespective of cooling rate and the peculiar behavior was due to fast heterogeneous crystallization caused by the nucleating effect of MWCNT and fast PLA chain mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yu, K. Dean, and L. Li, Prog. Polym. Sci., 31, 576 (2006).

    Article  CAS  Google Scholar 

  2. M. Ulbricht, Polymer, 47, 2217 (2006).

    Article  CAS  Google Scholar 

  3. S. S. Ray and M. Bousmina, Prog. Mater. Sci., 50, 962 (2005).

    Article  CAS  Google Scholar 

  4. R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004).

    Article  CAS  Google Scholar 

  5. J. L. Willett and R. L. Shogren, Polymer, 43, 5935 (2002).

    Article  CAS  Google Scholar 

  6. A. Sen, M. Bhattacharya, K. A. Stelson, and V. R. Voller, Mat. Sci. Eng. A-Struct., 338, 60 (2002).

    Article  Google Scholar 

  7. K.-S. Kim, I.-J. Chin, J. S. Yoon, H. J. Choi, D. C. Lee, and K. H. Lee, J. Appl. Polym. Sci., 82, 3618 (2001).

    Article  CAS  Google Scholar 

  8. L. Wang, R. L. Shogren, and C. Carriere, Polym. Eng. Sci., 40, 499 (2000).

    Article  CAS  Google Scholar 

  9. S. Jacobsen, P. H. Degée, and H. G. Fritz, Polym. Eng. Sci., 39, 1311 (1999).

    Article  CAS  Google Scholar 

  10. A. Söergård and M. Stolt, Prog. Polym. Sci., 27, 1123 (2002).

    Article  Google Scholar 

  11. Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 21, 117 (2000).

    Article  CAS  Google Scholar 

  12. R. Liao, B. Yang, W. Yu, and C. Zhou, J. Appl. Polym. Sci., 104, 310 (2007).

    Article  CAS  Google Scholar 

  13. J. Y. Nam, M. Okamoto, H. Okamoto, M. Nakano, A. Usuki, and M. Matsuda, Polymer, 47, 1340 (2006).

    Article  CAS  Google Scholar 

  14. K. S. Anderson and M. A. Hillmyer, Polymer, 47, 2030 (2006).

    Article  CAS  Google Scholar 

  15. Z. Hong, P. Zhang, C. He, X. Qiu, A. Liu, L. Chen, X. Chen, and X. Jing, Biomaterials, 26, 6296 (2005).

    Article  CAS  Google Scholar 

  16. H. Tsuji and Y. Tezuka, Biomacromolecules, 5, 1181 (2004).

    Article  CAS  Google Scholar 

  17. V. Maquet, A. R. Boccaccini, L. Pravata, I. Notingher, and R. Jérôme, Biomaterials, 25, 4185 (2004).

    Article  CAS  Google Scholar 

  18. J. Y. Nam, M. S, S. Ray, and M. Okanoto, Macromolecules, 36, 7126 (2003).

    Article  CAS  Google Scholar 

  19. H. Yamane and K. Sasai, Polymer, 44, 2569 (2003).

    Article  CAS  Google Scholar 

  20. H. Urayama, C. Ma, and Y. Kimura, Macromol. Mater. Eng., 288, 562 (2003).

    Article  CAS  Google Scholar 

  21. N. C. Bleach, S. N. Nazhat, K. E. Tanner, M. Kellomäki, and P. Törmälä, Biomterials, 23, 1579 (2002).

    Article  CAS  Google Scholar 

  22. Z.-G. Wang, X. Wang, B. S. Hsiao, S. Andjeli Jamiolkowski, J. McDivitt, J. Fischer, Jack Zhou, and C. C. Han, Polymer, 42, 8965 (2001).

    Article  CAS  Google Scholar 

  23. S. C. Schmidt and M. A. Hillmyer, J. Polym. Sci. Part B: Polym. Phys., 39, 300 (2001).

    Article  CAS  Google Scholar 

  24. J. T. Yoon, Y. G. Jeong, S. H. Lee, and B. G. Min, Polym. Advan. Technol., 20, 631 (2009).

    Article  CAS  Google Scholar 

  25. J. Y. Kim, H. S. Park, and S. H. Kim, Polymer, 47, 1379 (2006).

    Article  CAS  Google Scholar 

  26. S. H. Kim, S. H. Ahn, and T. Hirai, Polymer, 44, 5625 (2003).

    Article  CAS  Google Scholar 

  27. W. Xu, M. Ge, and P. He, J. Polym. Sci. Part B: Polym Phys., 40, 408 (2002).

    Article  CAS  Google Scholar 

  28. J. Ma, S. Zhang, Z. Qi, G. Li, and Y. Hu, J. Appl. Polym. Sci., 83, 1978 (2002).

    Article  CAS  Google Scholar 

  29. T. G. Gopakumar, J. A. Lee, M. Kontopoulou, and J. S. Parent, Polymer, 43, 5483 (2002).

    Article  CAS  Google Scholar 

  30. S. Z. D. Cheng and B. Wunderlich, Macromolecules, 21, 789 (1988).

    Article  CAS  Google Scholar 

  31. J. Y. Nam, M. Okamoto, H. Okamoto, M. Nakano, A. Usuki, and M. Matsuda, Polymer, 47, 1340 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Ryoun Youn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.Y., Shin, K.S., Lee, S.H. et al. Unique crystallization behavior of multi-walled carbon nanotube filled poly(lactic acid). Fibers Polym 11, 1018–1023 (2010). https://doi.org/10.1007/s12221-010-1018-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-010-1018-4

Keywords

Navigation