Skip to main content
Log in

Structural, optical and electrical properties of polypyrrole in an ionic liquid

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Structural, optical and dielectric properties of polypyrrole (Ppy) were studied. Structural and optical properties of Ppy were studied using FT-IR and UV–visible spectrophotometer. Optical band gap (\(E_{g}\)) values of Ppy in an ionic liquid were increased with composite raw material. Moreover, the relation between (\(E_{g}\)) and refractive index (n) was estimated by Moss relation and then the relation between n and optical high-frequency dielectric constant (\(\varepsilon^{{\prime }}\)) were calculated. The experimental dielectric constant values of Ppy were lower than the theoretical values calculated from the relation. The alternating current (ac) conductivity shows that the compound is a typical organic semiconductor, as its conductivity increases with increasing frequency and the obtained results have been discussed in terms of the correlated barrier hopping (CBH) model. The absorption coefficient effects of the Ppy samples exhibited nearly-Debye type process. The calculated α and τ 0 values are ~0.14 and ~0.01587 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sacramento E, Lima L, Oliveira CJ et al (2008) Hydrogen energy system and prospects for reducing emissions of fossil fuels pollutants in the Ceara state Brazil. Int J Hydrogen Energy 33:2132–2137

    Article  Google Scholar 

  2. Midilli A, Dincer I (2008) Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. Int J Hydrogen Energy 33:4209–4222

    Article  CAS  Google Scholar 

  3. Plantard G, Goetz V, Correia F et al (2011) Importance of a medium’s structure on Photocatalysis using TiO2-coated foams. Sol Energy Mater Sol Cells 95:2437–2442

    Article  CAS  Google Scholar 

  4. Belabed C, Haine N, Benabdelghani Z et al (2014) Photocatalytic hydrogen evolution on the hetero-system polypyrrol/TiO2 under visible light. Int J Hydrogen Energy 39:17533–17539

    Article  CAS  Google Scholar 

  5. Yakuphanoglu F, Yahiaa S, Senkal B et al (2011) Impedance spectroscopy properties of polypyrrole doped with boric acid. Synth Met 161:817–822

    Article  CAS  Google Scholar 

  6. Yakuphanoglu F, Senkal B (2009) Electrical conductivity and optical properties of poly (3-thiophene boronic acid) organic semiconductor. Polym Eng Sci 49:722–726

    Article  CAS  Google Scholar 

  7. Yakuphanoglu F, Senkal B (2010) Electrical characterization of the boron trifluoride doped poly (3-aminoacetophenone)/p–Si junction. Polym Eng Sci 50:929–935

    Article  CAS  Google Scholar 

  8. Cíka G, Dlhán L, Sersen F et al (2009) Interactions of polarons in poly(3-dodecythiophene) at low temperature. Synth Met 159:613–618

    Article  Google Scholar 

  9. Özyılmaz A, Erbil M, Yazıcı B (2006) The electrochemical synthesis of polyaniline on stainless steel and its corrosion performance. Curr Appl Phys 6:1–9

    Article  Google Scholar 

  10. Skotheim T, Reynolds J (2007) Handbook of conducting polymers: part 1: theory, synthesis, properties, and characterization, and part 2: processing and application. CRC Press, Taylor and Francis Group, New York

    Google Scholar 

  11. Utz W, Förmer W (1998) Polarons and bipolarons in cis-polyacetylene. Phys Rev B 57:10512–10525

    Article  CAS  Google Scholar 

  12. Velhal N, Patil N, Puri V (2015) In situ polymerization and characterization of highly conducting polypyrrole fish scales for high-frequency applications. J Electron Mater 44:4669–4675

    Article  CAS  Google Scholar 

  13. Velhal N, Patil N, Jamdade S et al (2014) Studies on galvanostatically electropolymerised polypyrrole/polyaniline composite thin films on stainless steel. Appl Surf Sci 307:129–135

    Article  CAS  Google Scholar 

  14. Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108:329–351

    Article  CAS  Google Scholar 

  15. Wang L, Li G, Yang L (2001) Preparation properties and applications of polypyrroles. React Funct Polym 47:125–139

    Article  CAS  Google Scholar 

  16. Fattoum A, Arous M, Gmati F et al (2007) Magnetic properties of Ba-M-type hexagonal ferrites prepared by the sol–gel method with and without polyethylene glycol added. J Phys D Appl Phys 40:4347–4355

    Article  CAS  Google Scholar 

  17. Pope M, Swenberg E (1999) Electronic processes in organic crystals and polymers. Oxford University Press, Oxford

    Google Scholar 

  18. Thombare JV, Rath MC, Han S et al (2013) Synthesis of hydrophilic polypyrrole thin films by silar method. Mater Phys Mech 16(2013):118–125

    CAS  Google Scholar 

  19. Hazarika J, Kumar A (2016) Studies of structural, optical, dielectric relaxation and ac conductivity of different alkylbenzenesulfonic acids doped polypyrrole nanofibers. Phys B 481:268–279

    Article  CAS  Google Scholar 

  20. Carroll D, Czerw R, Webster S (2005) Polymer–nanotube composites for transparent, conducting thin films. Synth Met 155:694–697

    Article  CAS  Google Scholar 

  21. Gürbüz O, Kurt I, Güner S et al (2015) Influence of Al concentration and annealing temperature on structural, optical, and electrical properties of Al co-doped ZnO thin films. Appl Surf Sci 349:549–560

    Article  Google Scholar 

  22. Aziz S, Ahmed H, Hussein M et al (2015) Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J Mater Sci 26:8022–8028

    CAS  Google Scholar 

  23. Dalmolin C, Biaggio S, Bocchi N (2014) Changes of electrochemical properties of polypyrrole when synthesized in a room-temperature ionic liquid. Mater Chem Phys 147:99–104

    Article  CAS  Google Scholar 

  24. Reddy R, Ahammed Y (1995) A study on the Moss relation. Infrared Phys Technol 36:825–830

    Article  CAS  Google Scholar 

  25. Gassoumi A, Alleg S, Kamoun-Turki N (2016) Influencing the structural, microstructural and optical properties of PbS nanocrystalline thin films by Mg2+ doping. J Mol Struct 1116:67–71

    Article  CAS  Google Scholar 

  26. Hannachi L, Bouarissa N (2009) Band parameters for cadmium and zinc chalcogenide compounds. Phys B 404:3650–3655

    Article  CAS  Google Scholar 

  27. Wang M, Dong S (2007) Enhanced electrochemical properties of nanocomposite polymer electrolyte based on copolymer with exfoliated clays. J Pow Source 170:425–432

    Article  CAS  Google Scholar 

  28. Gürbüz O, Okutan M (2016) Structural, electrical, and dielectric properties of Cr doped ZnO thin films: role of Cr concentration. Appl Surf Sci 387:1211–1218

    Article  Google Scholar 

  29. Aahokkumar M, Muthukumaran S (2015) Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped Co and Cu. J Magn Magn Mater 374(2015):61–66

    Article  Google Scholar 

  30. Ali I, Islam M, Ashiq M et al (2013) Effect of Tb–Mn substitution on DC and AC conductivity of Y-type hexagonal ferrite. J Alloy Compd 579:576–582

    Article  CAS  Google Scholar 

  31. Bai Y, Zhou J, Gui Z et al (2004) Electrical properties of non-stoichiometric Y-type hexagonal ferrite. J Magn Magn Mater 278:208–213

    Article  CAS  Google Scholar 

  32. Cole K, Cole R (1941) Dispersion and absorption in dielectrics, I. Alternating current characteristics. J Chem Phys 9:341–349

    Article  CAS  Google Scholar 

  33. Chourashiya M, Patil J, Pawar S et al (2008) Studies on structural, morphological and electrical properties of Ce1−x Gd x O2−(x/2). Mater Chem Phys 109:39–44

    Article  CAS  Google Scholar 

  34. Karamata N, Ali I, Aziz A et al (2015) Electrical and dielectric studies of substituted holmium based pyrochlore zirconates nanomaterials. J Alloy Compd 652:83–90

    Article  Google Scholar 

  35. Sindhu S, Anantharaman M, Thampi B et al (2002) Evaluation of ac conductivity of rubber ferrite composites from dielectric measurements. Bull Mater Sci 25:599–607

    Article  CAS  Google Scholar 

  36. Yalçın O, Coşkun R, Okutan M (2013) Comparison effects and dielectric properties of different dose methylene-blue-doped hydrogels. J Phys Chem B 117:8931–8934

    Article  Google Scholar 

  37. Batoo K, Kumar S, Lee C et al (2009) Finite size effect and influence of temperature on electrical properties of nanocrystalline Ni–Cd ferrites. Curr Appl Phys 9:1072–1078

    Article  Google Scholar 

  38. Jonscher A (1977) The “universal” dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  39. Böttger H, Bryksin V (1985) Hopping conduction in solids. Akademie, Berlin

    Google Scholar 

  40. Benali A, Bejar M, Dhahri E et al (2015) Electrical conductivity and ac dielectric properties of La0.8Ca0.2−x Pb x FeO3 (x = 0.05, 0.10 and 0.15) perovskite compounds. J Alloy Compd 653:506–512

    Article  CAS  Google Scholar 

  41. Barsoukov E, Macdonald J (2005) Impedance spectroscopy theory, experiment and applications. Second edition Wiley Inter science, New York, p 14

    Book  Google Scholar 

  42. Tohumcu C, Taş R, Can M (2014) Increasing the crystallite and conductivity of polypyrrole with dopant used. Ionics 20:1687–1692

    Article  CAS  Google Scholar 

  43. Angell C (1983) Fast ion motion in glassy and amorphous materials. Solid State Ionics 9–10:3–16

    Article  Google Scholar 

  44. Mott N, Davis E (1979) Electronic processes in non-crystalline materials, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  45. Dhahri A, Rhou F, Dhahri J et al (2011) Structural and electrical characteristics of rare earth simple perovskite oxide. Solid State Commun 151:738–742

    Article  CAS  Google Scholar 

  46. Pouch J, Alterovitz S (1990) Synthesis and properties of boron nitride. Trans Techn, Brookfield

    Google Scholar 

  47. Balarew C, Duhlew R (1984) Application of the hard and soft acids and bases concept to explain ligand coordination in double salt structures. J Solid State Chem 55:1–6

    Article  Google Scholar 

  48. Wagner K (1913) The theory of heterogeneous dielectric. Ann Phys 40:817–855

    Article  Google Scholar 

  49. Şentürk E, Okutan M, San S et al (2008) Debye type dielectric relaxation in carbon nano-balls’ and 4-DMAABCA acid doped E7 coded nematic liquid crystal. J Non Cryst Solids 354:3525–3528

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of Yıldız Technical University under Project Number: 2015-01-01-KAP08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Gürbüz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürbüz, O., Şenkal, B.F. & İçelli, O. Structural, optical and electrical properties of polypyrrole in an ionic liquid. Polym. Bull. 74, 2625–2639 (2017). https://doi.org/10.1007/s00289-016-1856-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1856-3

Keywords

Navigation