Skip to main content
Log in

Physical Investigations on Various Weight Percentage of Acetic Acid Doped Polypyrrole by Chemical Oxidative Polymerization

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy) was synthesized with different weight percentages of acetic acid (10 wt%, 30 wt%, and 50 wt%) through chemical oxidative polymerization. The structural, functional, optical, morphological, dielectric and electrical properties of PPy were investigated by XRD, FT-IR, UV–Vis, SEM, electrical conductivity and impedance analysis. The XRD and SEM analysis shows the formation of PPy and confirms the amorphous nature and the merely globular structure of the material. The FT-IR spectrum reveals the functional groups present in the samples. The absorption peak centered at 280 nm indicates π–π* transition in the heteroatom aromatic pyrrole ring through the recorded UV–Vis spectrum. The calculated bandgap value of the PPy samples is found to be 4.25, 3.85 and 3.50 eV. The room temperature impedance spectroscopy performs to analyze the dielectric and electrical properties of PPy with the frequency range 50 Hz–5 MHz. The AC conductivity remains constant up to 1 MHz and its value increases slowly and attains a maximum at a higher frequency which confirms the semiconducting behavior of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Booth, J. Leveneur, A.S. Costa, J. Kennedy, J. Travas-Sejdic, J. Phys. Chem. C 116(14), 8236–8242 (2012)

    CAS  Google Scholar 

  2. K. Yamani, R. Berenguer, A. Benyoucef, E. Morallon, J. Therm. Anal. Calorim. 135, 2089–2100 (2019)

    CAS  Google Scholar 

  3. V. Shaktawat, K. Sharma, N.S. Saxena, J. Ovonic Res. 6(6), 239–245 (2010)

    CAS  Google Scholar 

  4. D. Kincal, A. Kumar, A.D. Child, J.R. Reynolds, Synth. Met. 92, 53–56 (1998)

    CAS  Google Scholar 

  5. J.C. Vidal, E. Garcia, J.R. Castillo, Anal. Chim. Acta 385, 213–222 (1999)

    CAS  Google Scholar 

  6. T. Takamatsu, Y. Taketani, Jpn. Kokai. Tokyo Koho JP11 121, 279 [99 121,279]

  7. C. Jerome, D. Labaye, I. Bodart, R. Jerome, Synth. Met. 101, 3–4 (1999)

    CAS  Google Scholar 

  8. S. C. Yang, H. Liu, R. L. Clark, PCT Int. Appl., WO 99 22, 380 (Cl.H01 B1/00)

  9. E. Smela, J. Micromech. Microeng. 9, 1–18 (1999)

    CAS  Google Scholar 

  10. A. Reung-U-Rai, A. Prom-Jun, W. Prissanaroon-Ouajai, S. Ouajai, J. Met. Mater. Miner. 18, 27–31 (2008)

    Google Scholar 

  11. J. Jang, H. Yoon, Langmuir 21, 11484–11489 (2005)

    CAS  PubMed  Google Scholar 

  12. R.E. Partch, S.G. Gangoli, E. Matijevic, W. Cai, S. Arajs, J. Colloid Interface Sci. 144, 27–35 (1991)

    CAS  Google Scholar 

  13. J.Y. Ouyang, Y.F. Li, Polymer 38, 3997–3999 (1997)

    CAS  Google Scholar 

  14. Bharati Yeole, Tanushree Sen, Dharmesh Hansora, Satyendra Mishra, Am. J. Sens. Technol. 4, 10–20 (2017)

    Google Scholar 

  15. J.K. Mathad, R.M.V.G.K. Rao, Polym. Compos. 32(9), 1416–1422 (2011)

    CAS  Google Scholar 

  16. M. Campos, F.R. Simoes, E.C. Pereira, Sens. Actuators B 125, 158–166 (2007)

    CAS  Google Scholar 

  17. Y. Shen, M. Wan, Synth. Met. 96, 127–132 (1998)

    CAS  Google Scholar 

  18. J. Jang, J. Bae, Sens. Actuators B 122, 7–13 (2007)

    CAS  Google Scholar 

  19. Y.S. Chen, Y. Li, H.C. Wang, M.J. Yang, Carbon 45, 357–363 (2007)

    CAS  Google Scholar 

  20. S.S. Jeon, J.K. Park, C.S. Yoon, S.S. Im, Langmuir 25, 11420–11424 (2009)

    CAS  PubMed  Google Scholar 

  21. E. Pretsch, P. Buhlmann, M. Badertscher, Structure Determination of Organic Compounds Tables of Spectral Data, 4th edn. (Springer, New York, 2009), p. 283

    Google Scholar 

  22. L. Qu, G. Shi, J. Yuan, G. Han, F. Chen, J. Electroanal. Chem. 561, 149–156 (2004)

    CAS  Google Scholar 

  23. Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, Z.L. Wang, X.Y. Kong, Y. Zhang, Adv. Funct. Mater. 14, 943–956 (2004)

    CAS  Google Scholar 

  24. H. Shiigi, M. Kishimoto, H. Yakabe, B. Deore, T. Nagaoka, Anal. Sci. 18, 41–44 (2002)

    CAS  PubMed  Google Scholar 

  25. C.C. Bof Bufon, J. Vollmer, T. Heinzel, P. Espindola, H. John, J. Heinze, J. Phys. Chem. B 109, 19191–19199 (2005)

    CAS  PubMed  Google Scholar 

  26. M.R. Nabid, A.A. Entezami, J. Appl. Polym. Sci. 94, 254–258 (2004)

    CAS  Google Scholar 

  27. J. Tauc, Amorphous & Liquid Semiconductors (Plenum, New York, 1974), p. 159

    Google Scholar 

  28. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Appl. Surf. Sci. 367, 52–58 (2016)

    CAS  Google Scholar 

  29. H.M. Shanshool, M. Yahaya, W.M. MatYunus, I.Y. Abdullah, J. Mater. Sci. 27, 9804–9811 (2016)

    CAS  Google Scholar 

  30. H. El-Zahed, A. El-Korashy, M. Abdel Rahem, Vacuum 68, 19–27 (2003)

    Google Scholar 

  31. R. Suresh, V. Ponnuswamy, R. Mariappan, Appl. Surf. Sci. 273, 457–464 (2013)

    CAS  Google Scholar 

  32. K. Boukerma, M. Omastova, P. Fedorko, M.M. Chehimi, Appl. Surf. Sci. 249, 303–314 (2005)

    CAS  Google Scholar 

  33. J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, P. Mavinakuli, A.B. Karki, D.P. Young, Z. Guo, J. Phys. Chem. C 114, 16335–16342 (2010)

    CAS  Google Scholar 

  34. K.L. Nagai, R.W. Tendell, T.A. Skotheim, Handbook of Conducting Polymers (Marcel Dekker, New York, 1986)

    Google Scholar 

  35. H.C. Kang, K.E. Geckeler, Polymer 41, 6931–6934 (2000)

    CAS  Google Scholar 

  36. M.K. Ram, S. Annapoorni, S.S. Pandey, B.D. Malhotra, Polymer 39, 3399–3404 (1998)

    CAS  Google Scholar 

  37. H.T. Lee, C.S. Liao, S.A. Chen, Macromol. Chem. Phys. 194, 2443–2452 (1993)

    CAS  Google Scholar 

  38. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171–179 (1972)

    CAS  Google Scholar 

  39. R.M. Hill, A.K. Jonscher, J. Non Cryst. Solids 32, 53–69 (1979)

    CAS  Google Scholar 

  40. S. Rout, A. Hussian, J. Lee, I. Kim, S. Woo, J. Alloy. Compd. 477, 706–711 (2009)

    CAS  Google Scholar 

  41. S.K. Barik, R.N.P. Soudhary, A.K. Singh, Adv. Mater. Lett. 2, 419–424 (2011)

    CAS  Google Scholar 

  42. B. Gowtham, V. Ponnuswamy, G. Pradeesh, J. Chandrasekaran, D. Aradhana, J. Mater. Sci. 29, 6835–6843 (2018)

    CAS  Google Scholar 

  43. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, Oxford, 1973), p. 828

    Google Scholar 

Download references

Acknowledgements

The authors are much grateful to the DST laboratory, Department of Physics, SRMV College of Arts and Science, Coimbatore-641020 for providing instrumental facilities to analyze electrical studies.

Funding

We certify that no funding has been received for the conduct of this study and/or preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ponnuswamy.

Ethics declarations

Conflict of interest

We have no conflict of interest in this research work. This statement is to certify that all Authors have seen and approved the manuscript being submitted. We warrant that the article is the Authors original work. We warrant that the article has not received prior publication and is not under consideration for publication elsewhere. On behalf of all Co-Authors, the corresponding Author shall bear full responsibility for the submission. This research has not been submitted for publication nor has it been published in whole or in part elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowtham, B., Ponnuswamy, V., Pradeesh, G. et al. Physical Investigations on Various Weight Percentage of Acetic Acid Doped Polypyrrole by Chemical Oxidative Polymerization. J Inorg Organomet Polym 30, 2197–2203 (2020). https://doi.org/10.1007/s10904-019-01408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01408-5

Keywords

Navigation