Skip to main content
Log in

Influence of styrene–ethylene–butylene–styrene (SEBS) copolymer on the short-term static mechanical and fracture performance of polycarbonate (PC)/SEBS blends

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of styrene–ethylene–butylene–styrene (SEBS) copolymer on tensile properties, impact behaviours and fracture toughness of polycarbonate (PC) was studied. A decrease in tensile properties was observed where tensile strength decreases from 12 to 80 % while elongation-at-break decreases from 11 to 41 %. Notched Izod impact strength was enhanced significantly in presence of rubber and the blends became non-breakable at Φd = 0.21–0.40. Homogeneous dispersion of SEBS into the PC matrix was shown by morphological studies which indicate good affinity between the rubber particles and the polymer matrix. The dependence of impact strength on the blending rubber concentration and interparticle distance of the disperse phase were analysed. The fracture properties were studied by essential work of fracture method. It is revealed that non-essential or plastic work increase with an increased amount of SEBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Olabisi O, Robeson LM, Shaw MT (1979)Polymer miscibility. Academic Press, New York

  2. Mark HF, Kroschwitz JI (1988) Encyclopedia of polymer science and technology, vol pt. 1. John Wiley & Sons, New York

  3. Cheng TW, Keskkula H, Paul DR (1992) Property and morphology relationships for ternary blends of polycarbonate, brittle polymers and an impact modifier. Polymer 33(8):1606–1619. doi:10.1016/0032-3861(92)91056-8

    Article  CAS  Google Scholar 

  4. Xu H, Tang S, Yang L, Hou W (2010) Toughening of polycarbonate by core-shell latex particles: influence of particle size and spatial distribution on brittle-ductile transition. J Polym Sci Part B Polym Phys 48(18):1970–1977. doi:10.1002/polb.22075

    Article  CAS  Google Scholar 

  5. Balakrishnan S, Neelakantan NR, Saheb DN, Jog JP (1998) Rheological and morphological behaviour of blends of polycarbonate with unmodified and maleic anhydride grafted ABS. Polymer 39(23):5765–5771. doi:10.1016/S0032-3861(98)00088-3

    Article  CAS  Google Scholar 

  6. Cho K, Yang J, Il B, Chan K, Park E (2003) Notch sensitivity of polycarbonate and toughened polycarbonate. J Appl Polym Sci 89(11):3115–3121. doi:10.1002/app.12502

    Article  CAS  Google Scholar 

  7. Elmaghor F, Zhang L, Fan R, Li H (2004) Recycling of polycarbonate by blending with maleic anhydride grafted ABS. Polymer 45(19):6719–6724. doi:10.1016/j.polymer.2004.07.022

    Article  CAS  Google Scholar 

  8. Weng B, Xu F, Salinas A, Lozano K (2014) Mass production of carbon nanotube reinforced poly(methyl methacrylate) nonwoven nanofiber mats. Carbon 75:217–226. doi:10.1016/j.carbon.2014.03.056

    Article  CAS  Google Scholar 

  9. Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51. doi:10.1016/j.jcis.2013.08.006

    Article  CAS  Google Scholar 

  10. Han SJ, Lee H-I, Jeong HM, Kim BK, Raghu AV, Reddy KR (2014) Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci Part B 53(7):1193–1204. doi:10.1080/00222348.2013.879804

    Article  CAS  Google Scholar 

  11. Gu R, Xu WZ, Charpentier PA (2014) Synthesis of graphene-polystyrene nanocomposites via RAFT polymerization. Polymer 55(21):5322–5331. doi:10.1016/j.polymer.2014.08.064

    Article  CAS  Google Scholar 

  12. Starý Z, Pemsel T, Baldrian J, Münstedt H (2012) Influence of a compatibilizer on the morphology development in polymer blends under elongation. Polymer 53(9):1881–1889. doi:10.1016/j.polymer.2012.02.056

    Article  Google Scholar 

  13. Reddy KR, Sin BC, Ryu KS, Noh J, Lee Y (2009) In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth Met 159(19–20):1934–1939. doi:10.1016/j.synthmet.2009.06.018

    Article  CAS  Google Scholar 

  14. Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8. doi:10.1016/j.compscitech.2014.04.007

    Article  CAS  Google Scholar 

  15. Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci Part A Polym Chem 48(7):1477–1484. doi:10.1002/pola.23883

    Article  CAS  Google Scholar 

  16. Reddy KR, Lee K-P, Lee Y, Gopalan AI (2008) Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett 62(12–13):1815–1818. doi:10.1016/j.matlet.2007.10.025

    Article  CAS  Google Scholar 

  17. Lee Y, Kim S, H-i Lee, Jeong H, Raghu A, Reddy K, Kim B (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19(1):66–71. doi:10.1007/s13233-011-0106-7

    Article  CAS  Google Scholar 

  18. Wang X-H, Wang Z-G, Jiang W, Liu C-H, Yang H-D, Zhang H-X, Jiang B-Z (1997) Toughened blend of polycarbonate and epoxidized ethylene propylene diene rubber. Polymer 38(25):6251–6253. doi:10.1016/S0032-3861(97)00246-2

    Article  CAS  Google Scholar 

  19. Falk JC, Narducy KW, Cohen MS, Brunner R (1980) Transparent notch width sensitivity improvers for polycarbonate. Polym Eng Sci 20(11):763–768. doi:10.1002/pen.760201111

    Article  CAS  Google Scholar 

  20. Hansen MG, Bland DG (1985) Impact strength and melt viscosity of bisphenol-a polycarbonate and styrene–maleic-anhydride copolymer blends. Polym Eng Sci 25(14):896–902. doi:10.1002/pen.760251406

    Article  CAS  Google Scholar 

  21. Ohishi H, Ikehara T, Nishi T (2001) Phase morphologies and mechanical properties of high-impact polystyrene (HIPS) and polycarbonate blends compatibilized with polystyrene and polyarylate block copolymer. J Appl Polym Sci 80(12):2347–2360. doi:10.1002/app.1341

    Article  CAS  Google Scholar 

  22. Ishikawa M, Chiba I (1990) Toughening mechanisms of blends of poly(acrylonitrile-butadiene-styrene) copolymer and BPA polycarbonate. Polymer 31(7):1232–1238. doi:10.1016/0032-3861(90)90213-I

    Article  CAS  Google Scholar 

  23. Lee MP, Hiltner A, Baer E (1992) Phase morphology of injection-moulded polycarbonate/acrylonitrile-butadiene-styrene blends. Polymer 33(4):685–697. doi:10.1016/0032-3861(92)90323-O

    Article  CAS  Google Scholar 

  24. Inberg JPF, Gaymans RJ (2002) Co-continuous polycarbonate/ABS blends. Polymer 43(8):2425–2434. doi:10.1016/S0032-3861(01)00813-8

    Article  CAS  Google Scholar 

  25. Sivaraman P, Manoj NR, Barman S, Chandrasekhar L, Mishra VS, Kushwaha R, Samui AB, Chakraborty BC (2004) Thermoplastic copolyether ester elastomer toughened polycarbonate blends: 1. Mechanical properties and morphology of the blends. Polym Test 23(5):527–532. doi:10.1016/j.polymertesting.2003.12.001

    Article  CAS  Google Scholar 

  26. Fambri L, Penati A, Kolarik J (1997) Modification of polycarbonate with miscible polyurethane elastomers. Polymer 38(4):835–843. doi:10.1016/S0032-3861(96)00562-9

    Article  CAS  Google Scholar 

  27. Parker DS, Sue HJ, Huang J, Yee AF (1990) Toughening mechanisms in core-shell rubber modified polycarbonate. Polymer 31(12):2267–2277. doi:10.1016/0032-3861(90)90312-M

    Article  CAS  Google Scholar 

  28. Kayano Y, Keskkula H, Paul DR (1996) Effect of polycarbonate molecular weight and processing conditions on mechanical behaviour of blends with a core-shell impact modifier. Polymer 37(20):4505–4518. doi:10.1016/0032-3861(96)00292-3

    Article  CAS  Google Scholar 

  29. Kayano Y, Keskkula H, Paul DR (1998) Fracture behaviour of polycarbonate blends with a core-shell impact modifier. Polymer 39(4):821–834. doi:10.1016/S0032-3861(97)00361-3

    Article  CAS  Google Scholar 

  30. Wang X, Feng W, Li H, Ruckenstein E (2002) Optimum toughening via a bicontinuous blending: toughening of PPO with SEBS and SEBS-g-maleic anhydride. Polymer 43(1):37–43. doi:10.1016/S0032-3861(01)00601-2

    Article  CAS  Google Scholar 

  31. Kraton Polymers SEBS G1643. http://docs.kraton.com/tl_warehouse/pdf_data_docs/WG_4140_WG29E4.tmp.pdf

  32. SABIC Innovative Plastics, polycarbonate LEXAN 143. http://www.polycase.com/uploads/28861332769697.pdf

  33. Zhu S, So J-H, Mays R, Desai S, Barnes WR, Pourdeyhimi B, Dickey MD (2013) Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 23(18):2308–2314. doi:10.1002/adfm.201202405

    Article  CAS  Google Scholar 

  34. Testing ASf, Materials (1976) Annual Book of ASTM Standards, vol pt. 37. ASTM, Philadelphia

  35. Cotterell B, Reddel JK (1977) The essential work of plane stress ductile fracture. Int J Fract 13(3):267–277. doi:10.1007/bf00040143

    CAS  Google Scholar 

  36. Cotterell B (1977) Plane stress ductile fracture. In: Sih GC (ed) Fracture mechanics and technology, vol 2. Sijthoff and Noordhoff, Amsterdam, pp 785–795

  37. Cotterell B, Mai YW (1981) Plane stress ductile fracture. In: Francois D (ed) Advances in fracture research, vol 4. Pergamon Press, Oxford, pp 1683–1695

  38. Cotterell B, Lee E, Mai YW (1982) Mixed mode plane stress ductile fracture. Int J Fract 20(4):243–250. doi:10.1007/bf01130611

    Article  Google Scholar 

  39. Mai YW, Cotterell B (1985) Effect of specimen geometry on the essential work of plane stress ductile fracture. Eng Fract Mech 21(1):123–128. doi:10.1016/0013-7944(85)90059-1

    Article  Google Scholar 

  40. Mai Y-W, Cotterell B (1986) On the essential work of ductile fracture in polymers. Int J Fract 32(2):105–125. doi:10.1007/bf00019787

    Article  CAS  Google Scholar 

  41. Cotterell B, Pardoen T, Atkins AG (2005) Measuring toughness and the cohesive stress–displacement relationship by the essential work of fracture concept. Eng Fract Mech 72(6):827–848. doi:10.1016/j.engfracmech.2004.10.002

    Article  Google Scholar 

  42. Broberg KB (1974) The importance of stable crack extension in linear and non-linear fracture mechanics. In: Sih GC (ed) Prospect of fracture mechanics. Noordhoff, Leyden, pp 125–138

  43. Broberg KB (1975) On stable crack growth. J Mech Phys Solids 23(3):215–237. doi:10.1016/0022-5096(75)90017-4

    Article  Google Scholar 

  44. Maiti SN, Das R (2005) Mechanical properties of impact i-PP/CSM rubber blends. Int J Polym Mater Polym Biomater 54(6):467–482. doi:10.1080/00914030390260436

    Article  CAS  Google Scholar 

  45. Tomar N, Maiti SN (2007) Mechanical properties of PBT/ABAS blends. J Appl Polym Sci 104(3):1807–1817. doi:10.1002/app.25831

    Article  CAS  Google Scholar 

  46. Wu S (1985) Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 26(12):1855–1863. doi:10.1016/0032-3861(85)90015-1

    Article  CAS  Google Scholar 

  47. Agarwal BD, Broutman LJ (1990) Analysis and performance of fiber composites, 2nd edn. Wiley & Sons, New York

  48. Cohen LJ, Ishai O (1967) The elastic properties of three-phase composites. J Compos Mater 1(4):390–403. doi:10.1177/002199836700100407

    Article  Google Scholar 

  49. Milewski JV, Katz HS (1987) Handbook of reinforcements for plastics. Van Nostrand Reinhold Company

  50. Greco R, Astarita MF, Dong L, Sorrentino A (1994) Polycarbonate/ABS blends: processability, thermal properties, and mechanical and impact behavior. Adv Polym Technol 13(4):259–274. doi:10.1002/adv.1994.060130402

    Article  CAS  Google Scholar 

  51. Chiang W-Y, Yang W-D, Pukánszky B (1992) Polypropylene composites. II: structure-property relationships in two- and three-component polypropylene composites. Polym Eng Sci 32(10):641–648. doi:10.1002/pen.760321002

    Article  CAS  Google Scholar 

  52. Gupta AK, Purwar SN (1984) Tensile yield behavior of PP/SEBS blends. J Appl Polym Sci 29(11):3513–3531. doi:10.1002/app.1984.070291126

    Article  CAS  Google Scholar 

  53. Gupta AK, Purwar SN (1985) Studies on binary and ternary blends of polypropylene with SEBS, PS, and HDPE. II. Tensile and impact properties. J Appl Polym Sci 30(5):1799–1814. doi:10.1002/app.1985.070300502

    Article  CAS  Google Scholar 

  54. Maiti SN, Barman N, Gupta AK (2005) Mechanical properties of ABS/CSM rubber blends. Int J Polym Mater Polym Biomater 54(6):527–539. doi:10.1080/00914030390278635

    Article  CAS  Google Scholar 

  55. Kunori T, Geil PH (1980) Morphology-property relationships in polycarbonate-based blends. II. Tensile and impact strength. J Macromol Sci Part B 18(1):135–175. doi:10.1080/00222348008241376

  56. Piggott MR, Leidner J (1974) Misconceptions about filled polymers. J Appl Polym Sci 18(6):1619–1623. doi:10.1002/app.1974.070180604

    Article  CAS  Google Scholar 

  57. Nielsen LE (1966) Simple theory of stress-strain properties of filled polymers. J Appl Polym Sci 10(1):97–103. doi:10.1002/app.1966.070100107

    Article  CAS  Google Scholar 

  58. Nielsen LE (1967) Mechanical properties of particulate-filled systems. J Compos Mater 1(1):100–119. doi:10.1177/002199836700100110

    CAS  Google Scholar 

  59. Passmore EM, Spriggs RM, Vasilos TJ (1965) Ceramic Abstracts. J Am Ceram Soc 48(1):1–34. doi:10.1111/j.1151-2916.1965.tb11780.x

    Article  CAS  Google Scholar 

  60. Nicodemo L, Nicolais L (1983) Mechanical properties of metal/polymer composites. J Mater Sci Lett 2(5):201–203. doi:10.1007/bf00725619

    Article  CAS  Google Scholar 

  61. Mitsuishi K, Kodama S, Kawasaki H (1985) Mechanical properties of polypropylene filled with calcium carbonate. Polym Eng Sci 25(17):1069–1073. doi:10.1002/pen.760251704

    Article  CAS  Google Scholar 

  62. Nielsen LE (1974) Mechanical properties of polymers and composites. Marcel Dekker Incorporated, New York

  63. Hourston DJ, Lane S, Zhang HX (1995) Toughened thermoplastics: 3. Blends of poly(butylene terephthalate) with (butadiene-co-acrylonitrile) rubbers. Polymer 36(15):3051–3054. doi:10.1016/0032-3861(95)94358-Z

    Article  CAS  Google Scholar 

  64. Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40(9):2347–2365. doi:10.1016/S0032-3861(98)00444-3

    Article  CAS  Google Scholar 

  65. Wu S (1988) A generalized criterion for rubber toughening: the critical matrix ligament thickness. J Appl Polym Sci 35(2):549–561. doi:10.1002/app.1988.070350220

    Article  CAS  Google Scholar 

  66. Bucknall CB (1977) Toughened plastics. Applied Science Publishers Ltd, London

  67. Dwyer SM, Boutni ON, Shu C (1996) In: Moore EP (ed) Polypropylene handbook. Hanser/Gardner Publications, New York

    Google Scholar 

  68. Karger-kocsis J (1999) Toward understanding the morphology-related crack initiation and propagation behavior in polypropylene systems as assessed by the essential work of fracture approach. J Macromol Sci Part B 38(5–6):635–646. doi:10.1080/00222349908248127

    Article  Google Scholar 

  69. Bucknall CB, Paul DR (2009) Notched impact behavior of polymer blends: part 1: New model for particle size dependence. Polymer 50(23):5539–5548. doi:10.1016/j.polymer.2009.09.059

    Article  CAS  Google Scholar 

  70. Brydson JA (1999) Plastics materials. Butterworth-Heinemann, Oxford

  71. Mehrabi Mazidi M, Razavi Aghjeh MK (2015) Synergistic toughening effects of dispersed components in PP/PA6/EPDM ternary blends; quantitative analysis of the fracture toughness via the essential work of fracture (EWF) methodology. RSC Adv 5(58):47183–47198. doi:10.1039/c5ra07193c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Maiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garhwal, A., Maiti, S.N. Influence of styrene–ethylene–butylene–styrene (SEBS) copolymer on the short-term static mechanical and fracture performance of polycarbonate (PC)/SEBS blends. Polym. Bull. 73, 1719–1740 (2016). https://doi.org/10.1007/s00289-015-1573-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1573-3

Keywords

Navigation