Skip to main content
Log in

Polymerization of octamethylcyclotetrasiloxane between montmorillonite nanoplatelets initiated by surface anions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Research deals with the assessment of grafting of cyclosiloxanes onto organically modified montmorillonite (MMT) layers through anionic ring-opening polymerization (AROP) without additional catalyst or initiator. Pristine Na+-MMT was organically modified by systematically varying the hexadecyltrimethylammonium bromide (HDTMABr) loading level. X-ray diffraction and thermogravimetric analysis of differently modified MMTs (OMMTs) showed that HDTMABr cations that exchanged sodium cations were strongly attracted to the silicate platelet surfaces. Part of HDTMABr formed a sandwiched HDTMABr layer between organically modified silicate platelets. The obtained OMMTs were tested as initiator material for AROP of octamethylcyclotetrasiloxane (D4) in the bulk, since the D4 polymerization may be initiated by oxygen anions located on the silicate surfaces. The highest monomer conversion (91 % after 24 h at 80 °C) was observed when OMMT with HDTMABr amount equal to cation exchange capacity was used. At lower amounts of HDTMABr, the MMT was less organically modified and thus less compatible with D4. On the other hand, when the HDTMABr sandwiched layer was thicker, lower rates of polymerization were observed due to the hindered transport of monomer to silicate platelet surfaces. The active function of surface anions in MMT platelets in the initiation process was confirmed experimentally by varying the OMMT/D4 ratio. It was observed that monomer conversion increased with increasing OMMT/D4 ratio. The obtained composites were exfoliated. In the last part of the research, OMMT was added to the formulation for D4 emulsion polymerization, where HDTMABr was also used as an emulsifier. The obtained composite material had a significantly improved thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schmidt DF, Giannelis EP (2009) Silicate dispersion and mechanical reinforcement in polysiloxane/layered silicate nanocomposites. Chem Mater 22:167–174. doi:10.1021/cm9026978

    Article  Google Scholar 

  2. Schmidt DF, Clément F, Giannelis EP (2006) On the origins of silicate dispersion in polysiloxane/layered-silicate nanocomposites. Adv Funct Mater 16:417–425. doi:10.1002/adfm.200500008

    Article  CAS  Google Scholar 

  3. Fukushima Y, Inagaki S (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J Incl Phenom 5:473–482. doi:10.1007/BF00664105

    Article  CAS  Google Scholar 

  4. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8:1179–1184. doi:10.1557/JMR.1993.1179

    Article  CAS  Google Scholar 

  5. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29. doi:10.1016/S0169-1317(99)00017-4

    Article  CAS  Google Scholar 

  6. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng R 28:1–63. doi:10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  7. Okamoto M (2006) Recent advances in polymer/layered silicate nanocomposites: an overview from science to technology. Mater Sci Technol 22:756–779. doi:10.1179/174328406x101319

    Article  CAS  Google Scholar 

  8. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. doi:10.1016/j.progpolymsci.2003.08.002

    Article  Google Scholar 

  9. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35. doi:10.1002/adma.19960080104

    Article  CAS  Google Scholar 

  10. Tasdelen MA, Kreutzer J, Yagci Y (2010) In situ synthesis of polymer/clay nanocomposites by living and controlled/living polymerization. Macromol Chem Phys 211:279–285. doi:10.1002/macp.200900590

    Article  CAS  Google Scholar 

  11. Lewicki JP, Liggat JJ, Patel M (2009) The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polym Degrad Stab 94:1548–1557. doi:10.1016/j.polymdegradstab.2009.04.030

    Article  CAS  Google Scholar 

  12. Nishihama S, Yamada H, Nakazawa H (1997) Polymerization of tetramethylcyclotetrasiloxane monomer by ion-exchanged montmorillonite catalysts. Clay Min 32:645–651. doi:10.1180/claymin.1997.032.4.14

    Article  CAS  Google Scholar 

  13. Ma J, Xu J, Ren J-H, Yu Z-Z, Mai Y-W (2003) A new approach to polymer/montmorillonite nanocomposites. Polymer 44:4619–4624. doi:10.1016/S0032-3861(03)00362-8

    Article  CAS  Google Scholar 

  14. Bruzaud S, Levesque G (2002) Polysiloxane-g-TiNbO5 nanocomposites: synthesis via in situ intercalative polymerization and preliminary characterization. Chem Mater 14:2421–2426. doi:10.1021/cm021108b

    Article  CAS  Google Scholar 

  15. Beigbeder A, Bruzaud S, Mederic P, Aubry T, Grohens Y (2005) Rheological characterization of polydimethylsiloxane/HTiNbO5 nanocomposites prepared by different routes. Polymer 46:12279–12286. doi:10.1016/j.polymer.2005.10.086

    Article  CAS  Google Scholar 

  16. Lebrun L, Bruzaud S, Grohens Y, Langevin D (2006) Elaboration and characterisation of PDMS-HTiNbO5 nanocomposite membranes. Eur Polym J 42:1975–1985. doi:10.1016/j.eurpolymj.2006.03.016

    Article  CAS  Google Scholar 

  17. Messersmith PB, Giannelis EP (1993) Polymer-layered silicate nanocomposites: in situ intercalative polymerization of ε-caprolactone in layered silicates. Chem Mater 5:1064–1066. doi:10.1021/cm00032a005

    Article  CAS  Google Scholar 

  18. Messersmith PB, Giannelis EP (1995) Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites. J Polym Sci Part A Polym Chem 33:1047–1057. doi:10.1002/pola.1995.080330707

    Article  CAS  Google Scholar 

  19. Lepoittevin B, Pantoustier N, Alexandre M, Calberg C, Jerome R, Dubois P (2002) Polyester layered silicate nanohybrids by controlled grafting polymerization. J Mater Chem 12:3528–3532. doi:10.1039/B205787E

    Article  CAS  Google Scholar 

  20. Viville P, Lazzaroni R, Pollet E, Alexandre M, Dubois P (2004) Controlled polymer grafting on single clay nanoplatelets. J Am Chem Soc 126:9007–9012. doi:10.1021/ja048657y

    Article  CAS  Google Scholar 

  21. Pantoustier N, Lepoittevin B, Alexandre M, Dubois P, Kubies D, Calberg C, Jérôme R (2002) Biodegradable polyester layered silicate nanocomposites based on poly(ε-caprolactone). Polym Eng Sci 42:1928–1937. doi:10.1002/pen.11085

    Article  CAS  Google Scholar 

  22. Lepoittevin B, Pantoustier N, Devalckenaere M, Alexandre M, Calberg C, Jerome R, Henrist C, Rulmont A, Dubois P (2003) Polymer/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation: a masterbatch process. Polymer 44:2033–2040. doi:10.1016/s0032-3861(03)00076-4

    Article  CAS  Google Scholar 

  23. Lepoittevin B, Pantoustier N, Devalckenaere M, Alexandre M, Kubies D, Calberg C, Jerome R, Dubois P (2002) Poly(ε-caprolactone)/clay nanocomposites by in situ intercalative polymerization catalyzed by dibutyltin dimethoxide. Macromolecules 35:8385–8390. doi:10.1021/ma020300w

    Article  CAS  Google Scholar 

  24. Liao LQ, Zhang C, Gong SQ (2007) Preparation of poly(ε-caprolactone)/clay nanocomposites by microwave-assisted in situ ring-opening polymerization. Macromol Rapid Commun 28:1148–1154. doi:10.1002/marc.200700063

    Article  CAS  Google Scholar 

  25. Tarkin-Tas E, Goswami SK, Nayak BR, Mathias LJ (2008) Highly exfoliated poly(ε-caprolactone)/organomontmorillonite nanocomposites prepared by in situ polymerization. J Appl Polym Sci 107:976–984. doi:10.1002/app.26964

    Article  CAS  Google Scholar 

  26. Ganachaud F, Boileau S (2009) Siloxane-containing polymers. In: Dubois P, Coulembier O, Raquez JM (eds) Handbook of ring-opening polymerization. Wiley-VCH GmbH & Co, KGaA, Germany

    Google Scholar 

  27. Jones RG, Ando W, Chojnowski J (2001) Silicon-containing polymers: the science and technology of their synthesis and applications. Springer, The Netherlands

    Google Scholar 

  28. Mohorič I, Šebenik U (2011) Anionic ring-opening polymerization of octamethylcyclotetrasiloxane in emulsion above critical micelle concentration. Polymer 52:1234–1240. doi:10.1016/j.polymer.2011.01.025

    Article  Google Scholar 

  29. Zhao Z, Tang T, Qin Y, Huang B (2003) Relationship between the continually expanded interlayer distance of layered silicates and excess intercalation of cationic surfactants. Langmuir 19:9260–9265. doi:10.1021/la030056h

    Article  CAS  Google Scholar 

  30. LaRochelle RW, Cargioli JD, Williams EA (1976) Viscosity-molecular weight correlations of disiloxanols by 29Si Fourier transform nuclear magnetic resonance. Macromolecules 9:85–88. doi:10.1021/ma60049a016

    Article  CAS  Google Scholar 

  31. Lewis RN (1948) Methylphenylpolysiloxanes. J Am Chem Soc 70:1115–1117. doi:10.1021/ja01183a073

    Article  CAS  Google Scholar 

  32. Grassie N, Macfarlane IG (1978) Thermal degradation of polysiloxanes.1. Poly(dimethylsiloxane). Eur Polym J 14:875–884. doi:10.1016/0014-3057(78)90084-8

    Article  CAS  Google Scholar 

  33. Thomas TH, Kendrick TC (1969) Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres. J Polymer Sci 2 Polymer Phys 7:537. doi:10.1002/pol.1969.160070308

    CAS  Google Scholar 

  34. Lewis CW (1959) The pyrolysis of dimethylpolysiloxanes. II. J Polym Sci 37:425–429. doi:10.1002/pol.1959.1203713212

    Article  CAS  Google Scholar 

  35. Camino G, Lomakin SM, Lazzari M (2001) Polydimethylsiloxane thermal degradation—Part 1. Kinetic aspects. Polymer 42:2395–2402. doi:10.1016/s0032-3861(00)00652-2

    Article  CAS  Google Scholar 

  36. Camino G, Lomakin SM, Lageard M (2002) Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer 43:2011–2015. doi:10.1016/s0032-3861(01)00785-6

    Article  CAS  Google Scholar 

  37. Mohorič I, Krajnc M, Šebenik U (2009) Model-free kinetics analysis of thermal degradation of polysiloxane lubricant. Chem Biochem Eng Q 23:493–496

    Google Scholar 

  38. Mohorič I, Šebenik U (2011) Semibatch anionic ring-opening polymerization of octamethylcyclotetrasiloxane in emulsion. Polymer 52:4423–4428. doi:10.1016/j.polymer.2011.07.045

    Article  Google Scholar 

  39. Mohorič I, Šebenik U (2013) Semibatch anionic ring-opening polymerization of octamethylcyclotetrasiloxane in emulsions: effect of the amount of seed polymer particles. Polym Int 62:1022–1028. doi:10.1002/pi.4386

    Google Scholar 

Download references

Acknowledgments

The financial support of this work by the Slovenian Ministry of Higher Education, Science and Technology (Grant P2-0191) is gratefully acknowledged. The authors would like to express their gratitude to Dr. Ines Mohorič for the TGA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Šebenik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ručigaj, A., Krajnc, M. & Šebenik, U. Polymerization of octamethylcyclotetrasiloxane between montmorillonite nanoplatelets initiated by surface anions. Polym. Bull. 72, 1863–1878 (2015). https://doi.org/10.1007/s00289-015-1377-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1377-5

Keywords

Navigation