Skip to main content
Log in

Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite

  • Original contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A better understanding of the interactions between poly(ethylene oxide) (PEO)-based nonionic surfactants and smectite is important to fully comprehend the transport and the fate of nonionic surfactants in the environment and to design novel organo-clay composites. We studied the bonding between the surfactants and smectite and the molecular conformations of the surfactants in the interlayer of smectite. A reference polymer PEG and three nonionic surfactants—Brij 56, Brij 700, and PE-PEG—were intercalated into a smectite. The polymers and the composites were characterized with X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. The XRD and FT-IR results indicate that the bulk surfactants existed as crystalline materials at room temperature, and surfactant molecules had both helical/extended diblock and planar zigzag conformations. The surfactants intercalated smectite and expanded the d(001) spacing of smectite to nearly 1.8 nm. The shapes and positions of the IR bands of interlayer surfactants were similar to those of the melted (amorphous) bulk polymers: the wagging vibrations of the CH2 merged to a single band at 1,350 cm−1, the twisting bands of CH2 had 9 cm−1 or more blue shifts. These changes imply that the PEO segments of the surfactants existed with a distorted and extended conformation in the interlayer of smectite, and this extended conformation was an intermediate form of the helical and planar zigzag conformations. The molecular conformation of the interlayer surfactant was not affected by the seven types of exchangeable cations (Na+, K+, Ca2+, Mg2+, Cu2+, Ni2+, and H+) tested. There were 20 cm−1 or more red shifts from the C–O–C stretching bands when the surfactants were adsorbed. The red shifts suggest that surfactants were bonded to smectite mainly through (1) H-bonding between oxygen atoms of the PEO segments and water molecules in hydration shells of the exchangeable cations, and (2) direct coordination or ion–dipole interaction between the oxygen atoms of the PEO segments and the exchangeable cations. With the extended conformation, the oxygen atoms of the PEO segments have maximum exposure to the bonding water molecules and exchangeable cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Breen C, Thompson G, Webb M (1999) J Mater Chem 9:3159

    Article  CAS  Google Scholar 

  2. Deng Y, Dixon JB, White GN (2003) Clays Clay Miner 51:150

    Article  CAS  Google Scholar 

  3. Desbene PL, Portet F, Treiner C (1997) J Colloid Interface Sci 190:350

    Article  PubMed  CAS  Google Scholar 

  4. Portet F, Desbene PL, Treiner C (1997) J Colloid Interface Sci 194:379

    Article  PubMed  CAS  Google Scholar 

  5. Portet F, Desbene PL, Treiner C (1998) J Colloid Interface Sci 208:415

    Article  PubMed  CAS  Google Scholar 

  6. Nevskaia DM, Guerrero-Ruiz A, López-González JdD (1996) J Colloid Interface Sci 181:571

    Article  CAS  Google Scholar 

  7. Tahani A, Van Damme H, Noik C, Levitz P (1996) J Colloid Interface Sci 184:469

    Article  PubMed  CAS  Google Scholar 

  8. Pougnet S, Lindheimer M, Partyka S, Cot D, Brun B (1990) Calorim Anal Therm 20-21:147

    Google Scholar 

  9. Theng BKG (1974) The chemistry of clay-organic reactions. John Wiley and Sons, New York

    Google Scholar 

  10. Theng BKG (1980) Chem N Z 44:194

    CAS  Google Scholar 

  11. Theng BKG (1982) Clays Clay Miner 30:1

    Article  CAS  Google Scholar 

  12. Deng Youjun, Dixon Joe B (2002) Soil organic matter and organic-mineral interactions. In: Dixon Joe B, Schulze Darrell G (eds) Soil mineralogy with environmental applications vol 7 of Soil Science Society of America Book Series. Soil Science Society of America Inc, Madison, Wisconsin, USA, pp 69–107

    Google Scholar 

  13. Matsuura H(1990) Trends Phys Chem 1:89

    CAS  Google Scholar 

  14. Matsuura H, Fukuhara K, Takashima K, Sakakibara M (1991) J Phys Chem 95:10800

    Article  CAS  Google Scholar 

  15. Matsuura H, Fukuhara K, Masatoki S, Sakakibara M (1991) J Am Chem Soc 113:1193

    Article  CAS  Google Scholar 

  16. Takahashi Y, Tadokoro H (1973) Macromolecules 6:672

    Article  CAS  Google Scholar 

  17. Yoshihara T, Tadokoro H, Murahashi S (1964) J Chem Phys 41:2902

    Article  CAS  Google Scholar 

  18. Dissanayake MAKL, Frech R (1995) Macromolecules 28:5312

    Article  CAS  Google Scholar 

  19. Enriquez EP, Granick S (1996) Colloids Surf A 113:11

    Article  CAS  Google Scholar 

  20. Ramana Rao G, Castiglioni C, Gussoni M, Zerbi G, Martuscelli E (1985) Polymer 26:811

    Article  Google Scholar 

  21. Takahashi Y, Sumita I, Tadokoro H (1973) J Polym Sci Polym Phys Ed 11:2113

    CAS  Google Scholar 

  22. Tai K, Tadokoro H (1974) Macromolecules 7:507

    Article  CAS  Google Scholar 

  23. Aranda P, Ruiz-Hitzky E (1992) Chem Mater 4:1395

    Article  CAS  Google Scholar 

  24. Ruiz-Hitzky E, Aranda P (2000) Electroactive polymers intercalated in clays and related solids. In: Pinnavaia TJ, Beall G (eds) Polymer-clay nanocomposites. John Wiley and Sons Ltd, Chichester, pp 19–46

    Google Scholar 

  25. Bujdak J, Hackett E, Giannelis EP (2000) Chem Mater 12: 2168

    Article  CAS  Google Scholar 

  26. Hackett E, Manias E, Giannelis EP (2000) Chem Mater 12:2161

    Article  CAS  Google Scholar 

  27. Nelson DW, Sommers LE (1996) Total carbon organic carbon and organic matter. In: Sparks DL (eds) Methods of soil analysis: chemical methods Part 3. Soil Science Society of America Inc., Madison, Wisconsin, USA, pp 961–1010

    Google Scholar 

  28. White JL, Roth CB (1986) Infrared Spectrometry. In: Klute A (eds) Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods (2nd ed). Soil Science Society of America Inc., Madison, Wisconsin, USA, pp 291–330

    Google Scholar 

  29. Marcos JI, Orlandi E, Zerbi G (1990) Polymer 31:1899

    Article  CAS  Google Scholar 

  30. Kimura N, Umemura J, Hayashi S (1996) J Colloid Interface Sci 182:356

    Article  CAS  Google Scholar 

  31. Yan L, Roth CB, Low PF (1996) J Colloid Interface Sci 184:663

    Article  PubMed  CAS  Google Scholar 

  32. Yan L, Roth CB, Low PF (1996) Langmuir 12:4421

    Article  CAS  Google Scholar 

  33. Aranda P, Ruiz-Hitzky E (1994) Acta Polym 45: 59

    Article  CAS  Google Scholar 

  34. Aranda P, Ruiz-Hitzky E (1999) Appl Clay Sci 15:119

    Article  CAS  Google Scholar 

  35. Susko FJ (1990) Miner Metall Process 7:206

    CAS  Google Scholar 

  36. Susko FJ (1991) Trans Soc Min Metall, Explor 288:206

    Google Scholar 

  37. Parfitt RL, Greenland DJ (1970) Clay Miner 8:305

    Article  CAS  Google Scholar 

  38. Parfitt RL, Greenland DJ (1970) Clay Miner 8:317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author thanks Tom Slick Fellowship, Texas A&M University, for offering a one-year fellowship during this project. Fugen Dou performed surfactant loading quantification. Dr Richard Dress helped with optical microscopic examination of the polymers. We thank an anonymous reviewer for constructive suggestions on improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjun Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., Dixon, J.B. & White, G.N. Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite. Colloid Polym Sci 284, 347–356 (2006). https://doi.org/10.1007/s00396-005-1388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1388-0

Keywords

Navigation