Skip to main content
Log in

Triple percolation behavior and positive temperature coefficient effect of conductive polymer composites with especial interface morphology

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Selective localization of carbon black (CB) at the interface of polymer blends was achieved by the method that poly(styrene-co-maleic anhydride) (SMA) was first reacted with CB, and then blended with nylon6/polystyrene (PA6/PS). In the PA6/PS blends, CB was localized in PA6 phase and typical double percolation was exhibited. In the PA6/PS/(SMA–CB) blends, TEM results showed that CB particles were induced by SMA to localize at the interface, resulting in the especial interface morphology fabricated by SMA and CB. The especial interface morphology of PA6/PS/(SMA–CB) caused distinct triple percolation behavior and very low percolation threshold. The positive temperature coefficient (PTC) intensity of PA6/PS/(SMA–CB) composites was stronger than that of PA6/PS/CB and the negative temperature coefficient (NTC) effect was eliminated. The elimination of NTC effect was arisen from the especial interface morphology. A stronger PTC intensity was attributed to the low percolation threshold and the morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Strumpler R, Glatz-Reichenbach J (1999) Conducting polymer composites. J Electroceram 3(4):329–346

    Article  CAS  Google Scholar 

  2. Huang JC (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21(4):299–313

    Article  CAS  Google Scholar 

  3. Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270(2):134–139

    Article  CAS  Google Scholar 

  4. Zhang MQ, Gang YH, Zeng M, Zhang HB, Hou YH (1998) Two-step percolation in polymer blends filled with carbon black. Macromolecules 31(19):6724–6726

    Article  CAS  Google Scholar 

  5. Yui H, Wu GZ, Sano H, Sumita M, Kino K (2006) Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene. Polymer 47(10):3599–3608

    Article  CAS  Google Scholar 

  6. Xu ZB, Zhao C, Gu AJ, Fang ZP (2007) Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black. J Appl Polym Sci 106(3):2008–2017

    Article  CAS  Google Scholar 

  7. Gubbels F, Jerome R, Teyssie PH, Vanlathem E, Deltour R, Calderone A (1994) Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites. Macromolecules 27(7):1972–1974

    Article  CAS  Google Scholar 

  8. Xu SX, Wen M, Li J, Guo SY, Wang M, Du Q (2008) Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler. Polymer 49(22):4861–4870

    Article  CAS  Google Scholar 

  9. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25(2):265–271

    Article  CAS  Google Scholar 

  10. Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem Mater 10(5):1227–1235

    Article  CAS  Google Scholar 

  11. Dai K, Xu XB, Li ZM (2007) Electrically conductive carbon black (CB) filled in situ microfibrillar poly (ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution. Polymer 48(3):849–859

    Article  CAS  Google Scholar 

  12. Feng J, Chan CM, Li JX (2003) A method to control the dispersion of carbon black in an immiscible polymer blend. Polym Eng Sci 43(5):1058–1063

    Article  CAS  Google Scholar 

  13. Al-Saleh MH, Sundararaj U (2008) Nanostructured carbon black filled polypropylene/polystyrene blends containing styrene–butadiene–styrene copolymer: influence of morphology on electrical resistivity. Eur Polym J 44(7):1931–1939

    Article  CAS  Google Scholar 

  14. Feng JY, Chan CM (2000) Positive and negative temperature coefficient effects of an alternating copolymer of tetrafluoroethylene–ethylene containing carbon black-filled HDPE particles. Polymer 41:7279–7282

    Article  CAS  Google Scholar 

  15. Ahmad A, Mohd DHJ, Abdullah I (2004) Electron beam irradiation of carbon black filled linear low-density polyethylene. J Mater Sci 39(4):1459–1461

    Article  CAS  Google Scholar 

  16. Xie HF, Deng PY, Dong LS, Sun JZ (2002) LDPE/carbon black conductive composites: influence of radiation crosslinking on PTC and NTC properties. J Appl Polym Sci 85(13):2742–2749

    Article  CAS  Google Scholar 

  17. Lee GJ, Han MG, Chung SC, Suh KD, Im SS (2002) Effect of crosslinking on the positive temperature coefficient stability of carbon black-filled HDPE/ethylene–ethylacrylate copolymer blend system. Polym Eng Sci 42(8):1740–1747

    Article  CAS  Google Scholar 

  18. Bin Y, Xu C, Zhu D, Matsuo M (2002) Electrical properties of polyethylene and carbon black particle blends prepared by gelation/crystallization from solution. Carbon 40(2):195–199

    Article  CAS  Google Scholar 

  19. Xi Y, Ishikawa H, Bin YZ, Matsuo M (2004) Positive temperature coefficient effect of LMWPE–UHMWPE blends filled with short carbon fibers. Carbon 42:1699–1706

    Article  CAS  Google Scholar 

  20. Feng JY, Chan CM (2000) Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer 41(12):4559–4565

    Article  CAS  Google Scholar 

  21. Wang GJ, Qu ZH, Guo JL, Li Y, Liu L (2006) Study of multiple-wall carbon nanotubes functionalized by the poly(styrene-co-maleic anhydride). Acta Chim Sin 64(24):2505–2509

    CAS  Google Scholar 

  22. Meyer J (1973) Glass transition temperature as a guide to selection of polymers suitable for PTC materials. Polym Eng Sci 13:462–486

    Article  CAS  Google Scholar 

  23. Ohe K, Naito Y (1971) A new resistor having an anomalously large positive temperature coefficient. Jpn J Appl Phys 10:99–108

    Article  CAS  Google Scholar 

  24. Voet A (1981) Temperature effect of electrical resistivity of carbon black filled polymers. Rubber Chem Technol 54:42–50

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this study by the National Natural Science Foundation of China (Contract Number: 51003024) and the Foundation for University Young Key Teacher of He’ Nan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, C., Hu, Xn., He, Yx. et al. Triple percolation behavior and positive temperature coefficient effect of conductive polymer composites with especial interface morphology. Polym. Bull. 68, 2071–2087 (2012). https://doi.org/10.1007/s00289-012-0723-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0723-0

Keywords

Navigation