Skip to main content
Log in

Enhanced Reproducibility of Positive Temperature Coefficient Effect of CB/HDPE/PVDF Composites with the Addition of Ionic Liquid

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Developing an effective method for improving the reproducibility of positive temperature coefficient (PTC) effect is of great significance for large-scale application of polymer based PTC composites, owing to its contribution to the security and reliability. Herein, we developed a carbon black (CB)/high density polyethylene (HDPE)/poly(vinylidene fluoride) (PVDF) composite with outstanding PTC reproducibility, by incorporating 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIm][NTf2]) into the composite. After multiple repeated temperature cycles, the PTC performance of as-prepared material keeps almost unchanged and the varition of resistance at room temperature is less than 7%. Our studies revealed that [OMIm][NTf2] contributes to the improvement of PTC reproducibility in two ways: (i) it acts as an efficient plasticizer for refining the co-continuous phase morphology of HDPE/PVDE blends; (ii) it inhibits the crystallization of PVDF through the dilution effect, leading to more overlaps of the volume shrinkage process of HDPE and PVDF melt which results in the decrease of interface gap between HDPE and PVDF. This study demonstrated that ionic liquids as the multifunctional agents have great potential for improving the reproducibility in the application of the binary polymer based PTC composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y.; Zhang, H.; Porwal, H.; Tu, W.; Evans, J.; Bilotti, E. Universal control on pyroresistive behavior of flexible self-regulating heating devices. Adv. Funct. Mater. 2017, 27, 1702253.

    Google Scholar 

  2. Wang, L.; Chen, L. X.; Song, P.; Lu, Y. J.; Qiu, H.; Zhang, Y. L.; Kong, J.; Gu, J. W. Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 2019, 171, 111–118.

    CAS  Google Scholar 

  3. Chen, J. W.; Cui, X. H.; Sui, K. Y.; Zhu, Y. T.; Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol. 2017, 140, 99–105.

    CAS  Google Scholar 

  4. Yılmaz, O. C.; Sen, I.; Gurses, B. Q.; Ozdemir, O.; Cetin, L.; Sarıkanat, M. The effect of gold electrode thicknesses on electromechanical performance of Nafion-based ionic polymer metal composite actuators. Compos. Part B Eng. 2019, 165, 747–753.

    Google Scholar 

  5. Radzuan, N. A. M.; Zakaria, M. Y.; Sulong, A. B.; Sahari, J. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites. Compos. Part B Eng. 2017, 110, 153–160.

    Google Scholar 

  6. Chen, Z.; Hsu, P. H.; Lopez, J.; Li, Y. Z.; To, J. W. F.; Cui, Y.; Wang, C.; Andrews, S. C.; Liu, J.; Cui, Y.; Bao, Z. N. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 2016, 1, 15009.

    CAS  Google Scholar 

  7. Kang, H. S.; Sim, S.; Shin, Y. H. A numerical study on the light-weight design of PTC heater for an electric vehicle heating system. Energies 2018, 11, 1276.

    Google Scholar 

  8. Song, P.; Liang, C. B.; Gu, H. B.; Wang, L.; Qiu, H.; Kong, J.; Gu, J. W. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 2019, 181, 107698.

    CAS  Google Scholar 

  9. Liu, Y.; Zhang, H.; Porwal, H.; Tu, W.; Wan, K. N.; Evans, J.; Newton, M.; Busfield, J. J. C.; Peijs, T.; Bilotti, E. Tailored pyroresistive performance and flexibility by introducing a secondary thermoplastic elastomeric phase into graphene nanoplatelet (GNP) filled polymer composites for self-regulating heating devices. J. Mater. Chem. C 2018, 6, 2760–2768.

    CAS  Google Scholar 

  10. Wang, X.; Sparkman, J.; Gou, J. H. Electrical actuation and shape memory behavior of polyurethane composites incorporated with printed carbon nanotube layers. Compos. Sci. Technol. 2017, 141, 8–15.

    CAS  Google Scholar 

  11. Deng, H.; Lin, L.; Ji, M. Z.; Zhang, S. M.; Yang, M. B.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 2014, 39, 627–655.

    CAS  Google Scholar 

  12. Xu, H. Positive temperature coefficient effect of polymer nanocomposites. In Polymer nanocomposites, Huang, X.; Zhi, C. Eds. Springer: Cham., 2016, p. 83–110.

    Google Scholar 

  13. Bae, S. H.; Layek, R. K.; Lee, S. H.; Kuila, T.; Kim, N. H.; Lee, J. H. Effects of the reduction of PAni-coated oxidized multiwall carbon nanotubes on the positive temperature coefficient behaviors of their carbon black/high density polyethylene composites. Polym. Test. 2016, 50, 83–93.

    CAS  Google Scholar 

  14. He, L. X.; Tjong, S. C. Facile synthesis of silver-decorated reduced graphene oxide as a hybrid filler material for electrically conductive polymer composites. RSC Adv. 2015, 5, 15070–15076.

    CAS  Google Scholar 

  15. Zhang, R.; Tang, P.; Shi, R.; Cheng, T.; Bin, Y.; Hu, S. Improved electrical heating properties for polymer nanocomposites by electron beam irradiation. Polym. Bull. 2018, 75, 2847–2863.

    CAS  Google Scholar 

  16. Tang, P.; Zhang, R.; Chen, Z.; Yang, B.; Bin, Y. Effect of y-ray irradiation on the microstructure and self-heating property of carbon fiber/polyethylene composite films. Compos. Part A 2015, 78, 174–180.

    CAS  Google Scholar 

  17. Dang, Z. M.; Li, W. K.; Xu, H. P. High performance hybrid carbon fillers/binary-polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance. J. Appl. Phys. 2009, 106, 024913.

    Google Scholar 

  18. Liang, C. B.; Song, P.; Qiu, H.; Zhang, Y. L.; Ma, X. T.; Qi, F. Q.; Gu, H. B.; Kong, J.; Cao, D. P.; Gu, J. W. Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 2019, 11, 22590–22598.

    CAS  PubMed  Google Scholar 

  19. Hu, J.; Liu, L. Q.; Xie, Y. Y.; Wu, L. M. Facile synthesis of thermalresponsive P(NIPAM-S)/SiO2 hybrid hollow spheres and their controllable release property for fragrance. Polym. Chem. 2013, 4, 3293–3299.

    CAS  Google Scholar 

  20. Chen, L.; Hou, J. R.; Chen, Y. W.; Wang, H. J.; Duan, Y. X.; Zhang, J. M. Synergistic effect of conductive carbon black and silica particles for improving the pyroresistive properties of high density polyethylene composites. Compos. Part B Eng. 2019, 178, 107465.

    CAS  Google Scholar 

  21. Qu, Y.; Zhang, W.; Dai, K.; Zheng, G.; Liu, C.; Chen, J.; Shen, C. Tuning of the PTC and NTC effects of conductive CB/PA6/HDPE composite utilizing an electrically superfine electrospun network. Mater. Lett. 2014, 132, 48–51.

    CAS  Google Scholar 

  22. Lai, F.; Wang, B. B.; Zhang, P. Enhanced positive temperature coefficient in amorphous PS/CSPEMWCNT composites with low percolation threshold. J. Appl. Polym. Sci. 2019, 136, 47053.

    Google Scholar 

  23. Di, W. H.; Zhang, G.; Peng, Y.; Zhao, Z. D. Two-step PTC effect in immiscible polymer blends filled with carbon black. J. Mater. Sci. 2004, 39, 695–697.

    CAS  Google Scholar 

  24. Wei, Y.; Li, Z.; Liu, X.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Chen, J. B.; Shen, C. Y. Temperature-resistivity characteristics of a segregated conductive CB/PP/UHMWPE composite. Colloid Polym. Sci. 2014, 292, 2891–2898.

    CAS  Google Scholar 

  25. Zha, J. W.; Li, W. K.; Liao, R. J.; Bai, J.; Dang, Z. M. High performance hybrid carbon fillers/binary-polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance. J. Mater. Chem. A 2013, 1, 843–851.

    CAS  Google Scholar 

  26. Chan, C. M.; Feng, J. Carbon Black-Filled immiscible blends of poly(vinylidene fluoride) and high density polyethylene: the relationship between morphology and positive and negative temperature coefficient effects. Polym. Eng. Sci. 1999, 39, 1207–1215.

    Google Scholar 

  27. Chan, C. M.; Feng, J. Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer 2000, 41, 4559–4565.

    Google Scholar 

  28. Narkis, M.; Mironi-Harpaz, I. Thermoelectric behavior (PTC) of carbon black-containing TPX/UHMWPE and TPX/XL-UHMWPE blends. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 1415–1428.

    Google Scholar 

  29. Xie, L.; Zhu, Y. T. Tune the phase morphology to design conductive polymer composites: a review. Polym. Compos. 2018, 39, 2985–2996.

    CAS  Google Scholar 

  30. Bin, X.; Xu, C.; Agari, Y.; Matsuo, M. Morphology and electrical conductivity of ultrahigh molecular weight polyethylene/low molecular weight polyethylene/carbon black composites prepared by gelation/crystallization from solutions. Colloid Polym. Sci. 1999, 277, 452–461.

    CAS  Google Scholar 

  31. Zhang, X.; Zheng, X. D.; Zou, H. Z.; Zheng, X. F.; Liu, Z. Y.; Yang, W.; Yang, M. B. Two-step positive temperature coefficient effect with favorable reproducibility achieved by specific “island-bridge” electrical conductive networks in HDPE/PVDF/CNF composite. Compos. Part A 2017, 94, 21–31.

    CAS  Google Scholar 

  32. Jeon, J.; Lee, H. B. R.; Bao, Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 2013, 25, 850–855.

    CAS  PubMed  Google Scholar 

  33. Vidal, L.; Riekkola, M. L.; Canals, A. Ionic liquid-modified materials for solid-phase extraction and separation: a review. Anal. Chim. Acta 2012, 15, 19–41.

    Google Scholar 

  34. Xu, Y.; Xu, H.; Zheng, Q. Influence of ionic liquid on glass transition, dynamic rheology, and thermal stability of poly(methyl methacrylate)/silica nanocomposites. J. Appl. Polym. Sci. 2019, 136, 48007.

    Google Scholar 

  35. Xing, C. Y.; Li, J. Y.; Yang, C. M.; Li, Y. J. Local grafting of ionic liquid in poly(vinylidene fluoride) amorphous region and the subsequent microphase separation behavior in melt. Macromol. Rapid Commun. 2016, 37, 1559–1565.

    CAS  PubMed  Google Scholar 

  36. Wang, C.; Liao, W. P.; Wang, M. L.; Lin, C. C. Miscible blends of syndiotactic polystyrene and atactic polystyrene. Part 2. Depolarized light scattering studies and crystal growth rates. Polymer 2004, 45, 973–981.

    CAS  Google Scholar 

  37. Meng, Q. J.; Li, W. J.; Zheng, Y. S.; Zhang, Z. C. Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride). J. Appl. Polym. Sci. 2010, 116, 2674–2684.

    CAS  Google Scholar 

  38. Berhan, L.; Sastry, A. M. Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys. Rev. E 2007, 75, 041120.

    CAS  Google Scholar 

  39. Balberg, I.; Anderson, C. H.; Alexander, S.; Wagner, N. Excluded volume and its relation to the onset of percolation. Phys. Rev. B 1984, 30, 3933–3943.

    Google Scholar 

  40. Grunberg, L.; Nissan, A. H. Mixture law for viscosity. Nature 1949, 164, 799–800.

    CAS  PubMed  Google Scholar 

  41. Stefanie, B.; Andreas, S.; Sven, H.; Ralf, H. Morphology formation in PC/ABS blends during thermal processing and the effect of the viscosity ratio of blend partners. Materials 2016, 9, 659.

    Google Scholar 

  42. Pötschke, P.; Paul, D. R. Formation of co-continuous structures in melt-mixed immiscible polymer blends. J. Macromol. Sci. Polym. Rev. 2003, 1, 87–141.

    Google Scholar 

  43. Zha, J. W.; Wu, D. H.; Yang, Y.; Wu, Y. H.; Li, R. K. Y.; Dang, Z. M. Enhanced positive temperature coefficient behavior of the high-density polyethylene composites with multi-dimensional carbon fillers and their use for temperature-sensing resistors. RSC Adv. 2017, 7, 11338–11344.

    CAS  Google Scholar 

  44. Seo, M. K.; Rhee, K. Y.; Park, S. J. Influence of electro-beam irradiation on PTC/NTC behaviors of carbon blacks/HDPE conducting polymer composites. Curr. Appl. Phys. 2011, 11, 428–433.

    Google Scholar 

  45. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51803103 and 21873059) and Taishan Mountain Scholar Foundation (Nos. TS20081120 and tshw20110510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wu, X., Zhang, XF. et al. Enhanced Reproducibility of Positive Temperature Coefficient Effect of CB/HDPE/PVDF Composites with the Addition of Ionic Liquid. Chin J Polym Sci 39, 228–236 (2021). https://doi.org/10.1007/s10118-020-2475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2475-x

Keywords

Navigation