Skip to main content
Log in

Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The aim of this study was to use nanocomposites of polypropylene (PP) and montmorillonite (MMT), prepared by melt intercalation in a twin-screw extruder, as a food packaging material. The nanocomposites were evaluated by thermal, mechanical, and morphological analyses. Measurements of oxygen and water vapor permeability were also conducted to the nanocomposites. Besides, orange juice was used as modeling food and its physical–chemical and microbiological properties were determined. Despite of no significant changes in tensile properties were observed to the nanocomposites, the impact strength presented a substantial enhancement and the rigidity as well. Besides, MMT have shown a high capacity to improve oxygen barrier properties of PP. Electronic microscopy revealed certain homogeneity, showing some MMT-exfoliated lamellae in the PP matrix. Regarding the package efficacy, the orange juice quality was maintained after 10 days of storage. Concluding, this study seems to clarify a little more the claimed efficiency of nanocomposites as food packing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782. doi:10.1016/j.progpolymsci.2011.02.003

    Article  CAS  Google Scholar 

  2. Pereira D, Losada PP, Angulu I, Greaves W, Cruz JM (2009) Development of a polyamide nanocomposite for food industry: morphological structure, processing, and properties. Polym Comp 30:436–444. doi:10.1002/pc.20574

    Article  CAS  Google Scholar 

  3. Brody AL, Bugusu B, Han JH, Sand CK, McHugh TH (2008) Innovative food packaging solutions. J Food Sci 73:107–116. doi:10.1111/j.1750-3841.2008.00933.x

    Article  Google Scholar 

  4. Fu X, Qutubuddin S (2001) Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42:807–813. doi:10.1016/s0032-3861(00)00385-2

    Article  CAS  Google Scholar 

  5. Lan T, Kaviratna PD, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6:2216–2219. doi:10.1021/cm00048a006

    Article  CAS  Google Scholar 

  6. Kelly P, Akelah A, Qutubuddin S, Moet A (1994) Reduction of residual stress in montmorillonite/epoxy compounds. J Mater Sci 29:2274–2280. doi:10.1007/bf00363414

    Article  CAS  Google Scholar 

  7. Santos KS, Liberman SA, Oviedo MAS, Mauler RS (2009) Optimization of the mechanical properties of polypropylene-based nanocomposite via the addition of a combination of organoclays. Composites Part A 40:1199–1209. doi:10.1016/j.compositesa.2009.05.009

    Article  Google Scholar 

  8. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575. doi:10.1177/0021998306067321

    Article  CAS  Google Scholar 

  9. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. doi:10.1016/j.progpolymsci.2003.08.002

    Article  Google Scholar 

  10. Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS (2007) The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 48:966–974. doi:10.1016/j.polymer.2006.12.044

    Article  CAS  Google Scholar 

  11. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204. doi:10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  12. Esteves ACC, Barros-Timmons A, Trindade T (2004) Nanocompósitos de matriz polimérica: estratégias de síntese de materiais híbridos. Quim Nova 27:798–806

    Article  CAS  Google Scholar 

  13. García-Lopez D, Picazo O, Merino JC, Pastor JM (2003) Polypropylene–clay nanocomposites: effect of compatibilizing agents on clay dispersion. J Eur Polym 39:945–950. doi:10.1016/s0014-3057(02)00333-6

    Article  Google Scholar 

  14. Zhu L, Xanthos MJ (2004) Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J Appl Polym Sci 93:1891–1899. doi:10.1002/app.20658

    Article  CAS  Google Scholar 

  15. Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE (2004) Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45:487–506. doi:10.1016/j.polymer.2003.10.100

    Article  CAS  Google Scholar 

  16. Lertwimolnun W, Vergnes B (2005) Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer 46:3462–3471. doi:10.1016/j.polymer.2005.02.018

    Article  CAS  Google Scholar 

  17. Picard E, Gérard JF, Espuche E (2008) Water transport properties of polyamide 6 based nanocomposites prepared by melt blending: on the importance of the clay dispersion state on the water transport properties at high water activity. J Membr Sci 313:284–295. doi:10.1016/j.memsci.2008.01.011

    Article  CAS  Google Scholar 

  18. Tidjani A, Wald O, Pohl M-M, Hentschel MP, Schartel B (2003) Polypropylene–graft–maleic anhydride-nanocomposites: I—Characterization and thermal stability of nanocomposites produced under nitrogen and in air. Polym Degrad Stab 82:133–140. doi:10.1016/s0141-3910(03)00174-5

    Article  CAS  Google Scholar 

  19. Association of Official Analytical Chemists—AOAC (1995) Official methods of analysis

  20. American Public Health Association—APHA (1992) Compendium of methods for the microbiological examination of foods 3: 1219

  21. Lim JW, Hassan A, Rahmat AR, Wahit MU (2006) Morphology, thermal and mechanical behavior of polypropylene nanocomposites toughened with poly(ethylene-co-octene). Polym Int 55:204–215. doi:10.1002/pi.1942

    Article  CAS  Google Scholar 

  22. Castel CD, Ovideo MAS, Liberman SA, Oliveira RVB, Mauler RS (2011) Solvent-assisted extrusion of polypropylene/clay nanocomposites. J Appl Polym Sci 121:389–394. doi:10.1002/app.33605

    Article  Google Scholar 

  23. Lewin M, Pearce EM, Levon K, Mey-Marom A, Zammarano M, Wilkie CA, Jang BN (2006) Nanocomposites at elevated temperatures: migration and structural changes. Polym Adv Technol 17:226–234. doi:10.1002/pat.684

    Article  CAS  Google Scholar 

  24. Kim NH, Malhotra SV, Xanthos M (2006) Modification of cationic nanoclays with ionic liquids. Microporous Mesoporous Mater 96:29–35. doi:10.1016/j.micromeso.2006.06.017

    Article  CAS  Google Scholar 

  25. Perrin-Sarazin F, Ton-That MT, Bureau MN, Denault J (2005) Micro- and nano-structure in polypropylene/clay nanocomposites. Polymer 46:11624–11634. doi:10.1016/j.polymer.2005.09.076

    Article  CAS  Google Scholar 

  26. Rodrigues AW, Brasileiro MI, Araújo WD, Araújo EM, Neves GA, Melo TJA (2007) Desenvolvimento de nanocompósitos polipropileno/argila bentonita brasileira: I tratamento da argila e influência de compatibilizantes polares nas propriedades mecânicas. Polim Ciên Tecnol 17:219–227

    CAS  Google Scholar 

  27. Dong Y, Bhattacharyya D (2008) Effects of clay type, clay/compatibiliser content and matrix viscosity on the mechanical properties of polypropylene/organoclay nanocomposites. Composites Part A 39:1177–1191. doi:10.1016/j.compositesa.2008.03.006

    Article  Google Scholar 

  28. Benetti EM, Causin V, Marega C, Marigo A, Ferrara G, Ferraro A, Consalvi M, Fantinel F (2005) Morphological and structural characterization of polypropylene based nanocomposites. Polymer 46:8275–8285. doi:10.1016/j.polymer.2005.06.056

    Article  CAS  Google Scholar 

  29. Kester JJ, Fennema O (1986) Edible films and coatings: a review. Food Technol 40:47–59

    CAS  Google Scholar 

  30. Mali S, Grossmann MVE, Yamashita F (2010) Starch films: production, properties and potential of utilization. Semina: Ciências Agrárias 31:137–156

    Google Scholar 

  31. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24. doi:10.1016/j.jcis.2011.07.017

    Article  CAS  Google Scholar 

  32. Mittal V (2008) Mechanical and gas permeation properties of compatibilized polypropylene-layered silicate nanocomposites. J Appl Polym Sci 107:1350–1361. doi:10.1002/app.26952

    Article  CAS  Google Scholar 

  33. Osman MA, Mittal V, Suter UW (2007) Poly(propylene)-layered silicate nanocomposites: gas permeation properties and clay exfoliation. Macromol Chem Phys 208:68–75. doi:10.1002/macp.200600444

    Article  CAS  Google Scholar 

  34. Ali Dadfar SM, Alemzadeh I, Reza Dadfar SM, Vosoughi M (2011) Studies on the oxygen barrier and mechanical properties of low density polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl acetate copolymer as a new type of compatibilizer. Mater Des 32:1806–1813. doi:10.1016/j.matdes.2010.12.028

    Article  Google Scholar 

  35. Brasil (1987) Ministério da Agricultura e do Abastecimento. Portaria DINAL número 01 de 28 de janeiro de 1987. Available at: www.anvisa.gov.br. Accessed Jan 2010

  36. Ruschel CK, Carvalho HH, Souza RB, Tondo EC (2001) Qualidade microbiológica e físico-química de sucos de laranja comercializados nas vias públicas de Porto Alegre/RS. Ciên Tecnol Aliment 21:94–97

    Article  CAS  Google Scholar 

  37. Kaanane A, Kane D, Labuza TP (1988) Time and temperature effect on stability of moroccan processed orange juice during storage. J Food Sci 53:1470–1473. doi:10.1111/j.1365-2621.1988.tb09301.x

    Article  Google Scholar 

  38. Kimball DA (1999) Citrus processing: a complete guide. Aspen Publishers, New York

    Google Scholar 

  39. Plaza L, Sánchez-Moreno C, Elez-Martinez P, Ancos B, Matín-Belloso O, Cano MP (2006) Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. Eur Food Res Technol 233:487–493. doi:10.1007/s00217-005-0228-2

    Article  Google Scholar 

  40. Martín-Diana AB, Rico D, Barat JM, Barry-Ryan C (2009) Orange juices enriched with chitosan: optimisation for extending the shelf-life. Innov Food Sci Emerg Technol 10:590–600. doi:10.1016/j.ifset.2009.05.003

    Article  Google Scholar 

  41. Branco IG, Gasparetto CA (2003) Aplicação da metodologia de superfície de resposta para o estudo do efeito da temperatura sobre o comportamento reológico de misturas ternárias de polpa de manga e sucos de laranja e cenoura. Ciên Tecnol Aliment 23:166–171

    Article  Google Scholar 

  42. Ministry of Health, Brazil (2001) RDC nº 12, de 02/01/2001. Available: http://www.anvisa.org.br. Accessed 20 Aug 2011

  43. Sadler GD, Parish ME, Wicker L (1992) Microbial, enzymatic, and chemical changes during storage of fresh and processed orange juice. J Food Sci 57:1187–1197. doi:10.1111/j.1365-2621.1992.tb11295.x

    Article  CAS  Google Scholar 

  44. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol 11:742–748. doi:10.1016/j.ifset.2010.06.003

    Article  CAS  Google Scholar 

  45. Tournas VH, Heeres J, Burgess L (2006) Moulds and yeasts in fruit salads and fruit juices. Food Microbiol 23:684–688. doi:10.1016/j.fm.2006.01.003

    Article  CAS  Google Scholar 

  46. Wareing P, Davemport RR (2005) Chemistry and technology of soft drinks and fruit juices. Blackwell, Oxford, pp 279–297

    Google Scholar 

  47. Katsikogianni M, Missirlis YF (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria–material interactions. Eur Cells Mater 8:37–57

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Mauro Oviedo from Braskem S/A for the permeability analyses. The authors also wish to thank CAPES, CNPq, PRONEX/FAPERGS for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. B. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zehetmeyer, G., Soares, R.M.D., Brandelli, A. et al. Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material. Polym. Bull. 68, 2199–2217 (2012). https://doi.org/10.1007/s00289-012-0722-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0722-1

Keywords

Navigation