Skip to main content

Polyelectrolyte Complex-Based Ionically Gelled Biopolymeric Systems for Sustained Drug Release

  • Chapter
  • First Online:
Ionically Gelled Biopolysaccharide Based Systems in Drug Delivery

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

  • 353 Accesses

Abstract

The therapeutic agents such as proteins, peptides, or even cells are generally not stable at extreme conditions prevailing in the gastrointestinal tract. An ideal drug delivery system should protect the drugs from unfriendly environments and deliver them at the specific site, at the desired rate and in appropriate dosage forms [1,2,3]. For example, oral drug delivery systems must be designed in such a way that the drug carrier has good resistance against gastrointestinal enzymes and pH gradients (i.e., from 1 to 3 in the stomach to 6 to 7 in the intestine) [4]. The choice of the drug carrier to meet these requirements is critical in the design of drug delivery systems. Various polymeric substances can be used as a drug career. Use of natural polysaccharides is gaining attraction recently, as they are biodegradable, biocompatible, and less toxic. Apart from this, natural polysaccharides are amenable to simple modifications through which their properties can be fine-tuned to meet the specific requirements for a given therapeutic application; they can absorb drug molecules more efficiently and release them at a controlled rate. Polysaccharides from various natural sources such as algal sources (e.g., alginate), plant source (e.g., pectin, guar gum), microbial origin (e.g., cellulose, dextran, pullulan, levan, xanthan gum, gellan gum, etc.), and animal orgin (e.g., chitin, chitosan) are employed in drug delivery applications includes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Racovita S, Vasiliu S, Popa M, Luca C (2009) Polysaccharides based on micro- and nanoparticles obtained by ionic gelation and their applications as drug. Rev Roum Chim 54(9):709–718

    CAS  Google Scholar 

  2. Smelcerovic A, Knezevic-jugovic Z, Petronijevic Z (2008) Microbial Polysaccharides and their derivatives as current and prospective pharmaceuticals. Curr Pharm Des 14:1–28

    Article  Google Scholar 

  3. Usmiati S, Richana N, Mangunwidjaja D, Noor E, Prangdimurti E (2014) The Using of Ionic Gelation Method Based on Polysaccharides for Encapsulating the Macromolecules—A Review 2. Encapsulation for Protecting the Bioactive Compounds. Int Conf Food Secur Nutr 67:79–84

    CAS  Google Scholar 

  4. Martins S, Sarmento B, Souto EB, Ferreira DC (2007) Insulin-loaded alginate microspheres for oral delivery—Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydr Polym 69:725–731

    Article  CAS  Google Scholar 

  5. Kulkarni AD et al (2016) Polyelectrolyte complexes: mechanisms, critical experimental aspects, and applications. Artif Cells, Nanomedicine, Biotechnol 44(7):1615–1625

    Article  CAS  Google Scholar 

  6. Jain A, Thakur K, Sharma G, Kush P, Jain UK (2016) Fabrication, characterization and cytotoxicity studies of ionically cross-linked docetaxel loaded chitosan nanoparticles. Carbohydr Polym 137:65–74

    Article  CAS  PubMed  Google Scholar 

  7. Anal AK, Stevens WF, Remu C (2006) Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int J Pharm 312:166–173

    Article  CAS  PubMed  Google Scholar 

  8. Kiilll CP et al (2017) Synthesis and factorial design applied to a novel chitosan/sodium polyphosphate nanoparticles via ionotropic gelation as an RGD delivery system. Carbohydr Polym 157:1695–1702

    Article  CAS  PubMed  Google Scholar 

  9. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE (2010) Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62(1):59–82

    Article  CAS  PubMed  Google Scholar 

  10. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    Article  CAS  PubMed  Google Scholar 

  11. Sarika PR, James NR (2016) Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydr Polym 148:354–361

    Article  CAS  PubMed  Google Scholar 

  12. Lankalapalli S, Kolapalli VRM (2019) Polyelectrolyte Complexes: A Review of their Applicability in Drug Delivery Technology. Indian J. Pharm. Sci. 71(5):481–487

    Article  Google Scholar 

  13. Brovko OS, Palamarchuk IA, Val NA, Chukhchin DG (2017) Gels of Sodium Alginate–Chitosan Interpolyelectrolyte Complexes. Russ J Phys Chem A 91(8):1580–1585

    Article  CAS  Google Scholar 

  14. Cerchiara T et al (2016) Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym 143:124–130

    Article  CAS  PubMed  Google Scholar 

  15. Le D, Sophie A, Momar P, Cristea M, Karakasyan-dia C, Picton L (2014) Formation of polyelectrolyte complexes with diethylaminoethyl dextran: Charge ratio and molar mass effect. Carbohydr Polym 113:217–224

    Article  CAS  Google Scholar 

  16. Kumar A, Ahuja M (2013) Carboxymethyl gum kondagogu—chitosan polyelectrolyte complex nanoparticles: Preparation and characterization. Int J Biol Macromol 62:80–84

    Article  CAS  PubMed  Google Scholar 

  17. Polexe RC, Delair T (2013) Elaboration of stable and antibody functionalized positively charged colloids by polyelectrolyte complexation between chitosan and hyaluronic acid. Molecules 18:8563–8578

    Google Scholar 

  18. Tsai R et al (2014) Chitosan/pectin/gum Arabic polyelectrolyte complex: Process-dependent appearance, microstructure analysis and its application. Carbohydr Polym 101:752–759

    Article  CAS  PubMed  Google Scholar 

  19. Costalat M, Alcouffe P, David L, Delair T (2015) Macro-hydrogels versus nanoparticles by the controlled assembly of polysaccharides. Carbohydr Polym 134:541–546

    Article  CAS  PubMed  Google Scholar 

  20. Schatz C, Domard A, Viton C, Pichot C (2004) Versatile and Efficient Formation of Colloids of Biopolymer-Based Polyelectrolyte Complexes. Biomacromol 5:1882–1892

    Article  CAS  Google Scholar 

  21. Bigucci F et al (2008) Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur J Pharm Sci 35:435–441

    Article  CAS  PubMed  Google Scholar 

  22. Sadat F, Tekie M, Kiani M, Zakerian A, Pilevarian F (2017) Nano polyelectrolyte complexes of carboxymethyl dextran and chitosan to improve chitosan-mediated delivery of miR-145. Carbohydr Polym 159:66–75

    Article  CAS  Google Scholar 

  23. Wasupalli GK, Verma D (2018) Molecular interactions in self-assembled nano-structures of chitosan–sodium alginate based polyelectrolyte complexes. Int J Biol Macromol 114:10–17

    Article  CAS  PubMed  Google Scholar 

  24. Wu D, Delair T (2015) Stabilization of chitosan/hyaluronan colloidal polyelectrolyte complexes in physiological conditions. Carbohydr Polym 119:149–158

    Article  CAS  PubMed  Google Scholar 

  25. Voron NG, Derkach SR, Kuchina YA, Sokolan NI (2016) The chitosan–gelatin (bio) polyelectrolyte complexes formation in an acidic medium. Carbohydr Polym 138:265–272

    Article  CAS  Google Scholar 

  26. Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ (2007) Insulin-Loaded Nanoparticles are Prepared by Alginate Ionotropic Pre-Gelation Followed by Chitosan Polyelectrolyte Complexation. J Nanosci Nanotechnol 7(8):2833–2841

    Article  CAS  PubMed  Google Scholar 

  27. Saladini B, Bigucci F, Cerchiara T, Gallucci MC, Luppi B (2012) Microparticles based on chitosan/pectin polyelectrolyte complexes for nasal delivery of tacrine hydrochloride. Drug Deliv Transl Res 3:33–41

    Google Scholar 

  28. Delair T (2011) Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Biopharm 78(1):10–18

    Article  CAS  PubMed  Google Scholar 

  29. Madhusudana K, Kumar A, Soo S (2018) Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. J Mater Sci Technol 34(8):1371–1377

    Article  Google Scholar 

  30. Tan C, Xie J, Zhang X, Cai J, Xia S (2016) Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll 57:236–245

    Article  CAS  Google Scholar 

  31. Lalevée G, Sudre G, Montembault A, Meadows J, Malaise S, Crépet A (2016) Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan —Physicochemical study and structural analysis. Carbohydr Polym 154:86–95

    Article  PubMed  CAS  Google Scholar 

  32. Kulig D, Zimoch-Korzycka A, Jarmoluk A, Marycz K (2016) Study on Alginate–Chitosan Complex Formed with different polymer ratio. Polymers (Basel) 167:167–183

    Article  CAS  Google Scholar 

  33. Feng Q, Zeng G, Yang P, Wang C, Cai J (2005) Self-assembly and characterization of polyelectrolyte complex films of hyaluronic acid/chitosan, 258:85–88

    Google Scholar 

  34. Quadrado RFN, Fajardo AR (2018) Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. Arab J Chem

    Google Scholar 

  35. Li X, Wu Z, Zhang B, Pan Y, Meng R, Chen H (2019) Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chem 293(April):197–203

    Article  CAS  PubMed  Google Scholar 

  36. Henao E, Delgado E, Contreras H, Quintana G (2018) Polyelectrolyte complexation versus ionotropic gelation for chitosan-based hydrogels with carboxymethylcellulose, carboxymethyl starch, and alginic acid. Int J. Chem Eng 2018:1–12

    Google Scholar 

  37. Patil JS, Kamalapur MV, Marapur SC, Kadam DV (2010) Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Dig J Nanomater Biostructures 5(1):241–248

    Google Scholar 

  38. Hamman JH (2014) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8(June):1305–1322

    Google Scholar 

  39. Sadeghi AMM, Dorkoosh FA, Avadi MR, Saadat P, Rafiee-tehrani M, Junginger HE (2008) Preparation, characterization and antibacterial activities of chitosan, N -trimethyl chitosan (TMC) and N -diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm 355:299–306

    Article  CAS  PubMed  Google Scholar 

  40. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662

    Article  CAS  PubMed  Google Scholar 

  41. Kulig D, Zimoch-Korzycka A, Jarmoluk A, Marycz K (2016) Study on Alginate–Chitosan complex formed with. Polymers (Basel) 167:1–17

    Google Scholar 

  42. Sarmento B, Ferreira D, Veiga F, Ribeiro A (2006) Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym 66:1–7

    Article  CAS  Google Scholar 

  43. Hudson D, Margaritis A (2014) Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit Rev Biotechnol 34(July):161–179

    Article  CAS  PubMed  Google Scholar 

  44. Gierszewska M, Ostrowska-czubenko J, Chrzanowska E (2018) pH-responsive chitosan/alginate polyelectrolyte complex membranes reinforced by tripolyphosphate. Eur Polym J 101:282–290

    Google Scholar 

  45. Volod AV et al (2014) Soluble chitosan–carrageenan polyelectrolyte complexes and their gastroprotective activity. Carbohydr Polym 101:1087–1093

    Article  CAS  Google Scholar 

  46. Volod AV, Davydova VN, Glazunov VP, Likhatskaya GN, Yermak IM (2016) Influence of structural features of carrageenan on the formation of polyelectrolyte complexes with chitosan. Int J Biol Macromol 84:434–441

    Article  CAS  Google Scholar 

  47. Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery

    Google Scholar 

  48. Yan J, Wang Y, Qiu W, Wu J (2017) Construction and characterization of nanosized curdlan sulfate/chitosan polyelectrolyte complex toward drug release of zidovudine. Carbohydr Polym 174:209–216

    Article  CAS  PubMed  Google Scholar 

  49. Yan J, Qiu W, Wang Y, Wu L, Cheung PCK (2018) Formation and characterization of polyelectrolyte complex synthesized by chitosan and carboxylic curdlan for 5-fluorouracil delivery. Int J Biol Macromol 107:397–405

    Article  CAS  PubMed  Google Scholar 

  50. Krauland AH, Alonso MJ (2007) Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int J Pharm 340:134–142

    Article  CAS  PubMed  Google Scholar 

  51. Silva DA, Maciel JS, Feitosa JPA, Paula HCB, De Paula RCM (2010) Polysaccharide-based nanoparticles formation by polyeletrolyte complexation of carboxymethylated cashew gum and chitosan. J Mater Sci 45:5605–5610

    Article  CAS  Google Scholar 

  52. Wu D et al (2017) Ternary polysaccharide complexes: Colloidal drug delivery systems stabilized in physiological media. Carbohydr Polym 172:265–274

    Article  CAS  PubMed  Google Scholar 

  53. Giri TK et al (2019) Sustained release of diltiazem hydrochloride from cross-linked biodegradable IPN hydrogel Beads of pectin and modified xanthan. Indian J Pharm Sci 75(6):619–627

    Google Scholar 

  54. da Costa MPM, Ferreira ILM, Cruz MTM (2016) New polyelectrolyte complex from pectin/chitosan and montmorillonite clay. Carbohydr Polym 146:123–130

    Google Scholar 

  55. Drogoz A et al (2007) Polyelectrolyte Complexes from Polysaccharides: formation and Stoichiometry Monitoring. Langmuir 23(14):10950–10958

    Article  CAS  PubMed  Google Scholar 

  56. Verma VS, Sakure K, Badwaik HR (2017) Xanthan gum a versatile biopolymer: current status and future prospectus in hydro gel drug delivery. Curr Chem Biol 11:10–20

    Article  CAS  Google Scholar 

  57. Kim J, Hwang J, Seo Y, Jo Y, Son J, Choi J (2017) Engineered chitosan—xanthan gum biopolymers effectively adhere to cells and readily release incorporated antiseptic molecules in a sustained manner. J Ind Eng Chem 46:68–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ponnusami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ponnusami, V. (2021). Polyelectrolyte Complex-Based Ionically Gelled Biopolymeric Systems for Sustained Drug Release. In: Nayak, A.K., Hasnain, M.S., Pal, D. (eds) Ionically Gelled Biopolysaccharide Based Systems in Drug Delivery. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-2271-7_6

Download citation

Publish with us

Policies and ethics