Skip to main content

Advertisement

Log in

Asymptotic analysis of a TMDD model: when a reaction contributes to the destruction of its product

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The multi-scale dynamics of a two-compartment with first order absorption Target-Mediated Drug Disposition (TMDD) pharmacokinetics model is analysed, using the Computational Singular Perturbation (CSP) algorithm. It is shown that the process evolves along two Slow Invariant Manifolds (SIMs), on which the most intense components of the model are equilibrated, so that the less intensive are the driving ones. The CSP tools allow for the identification of the components of the TMDD model that (i) constrain the evolution of the process on the SIMs, (ii) drive the system along the SIMs and (iii) generate the fast time scales. Among others, such diagnostics identify (i) the factors that determine the start and the duration of the period in which the ligand-receptor complex acts and (ii) the processes that determine its degradation rate. The counterintuitive influence of the process that transfers the ligand from the tissue to the main compartment, as it is manifested during the final stage of the process, is studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abraham AK, Krzyzanski W, Mager DE (2007) Partial derivative—based sensitivity analysis of models describing target-mediated drug disposition. AAPS J 9(2):E181–E189

    Article  Google Scholar 

  • Bakshi S, de Lange E, van der Graaf P, Danhof M, Peletier L (2016) Understanding the behavior of systems pharmacology models using mathematical analysis of differential equations: prolactin modeling as a case study. CPT Pharmacomet Syst Pharmacol 5(7):339–351

    Article  Google Scholar 

  • Dada JO, Mendes P (2011) Multi-scale modelling and simulation in systems biology. Integr Biol 3:86–96

    Article  Google Scholar 

  • Danhof M, de Jongh J, De Lange EC, Della Pasqua O, Ploeger BA, Voskuyl RA (2007) Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 47:357–400

    Article  Google Scholar 

  • Diamantis DJ, Mastorakos E, Goussis DA (2015) \(\text{ H }_2/\text{ air }\) autoignition: the nature and interaction of the developing explosive modes. Combust Theor Model 19:382–433

    Article  Google Scholar 

  • Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M (2013) Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 52(2):83–124

    Article  Google Scholar 

  • Dua P, Hawkins E, van der Graaf PH (2015) A tutorial on target-mediated drug disposition (TMDD) models. CPT Pharmacomet Syst Pharmacol 4:324–337

    Article  Google Scholar 

  • Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Differ Equ 31(1):53–98

    Article  MathSciNet  MATH  Google Scholar 

  • Gibiansky L (2016) Personal communication

  • Gibiansky L, Gibiansky E (2009) Target-mediated drug disposition model: approximations, identifiability of model parameters and applications to the population pharmacokinetic-pharmacodynamic modeling of biologics. Expert Opin Drug Metab Toxicol 5(7):803–812

    Article  Google Scholar 

  • Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35(5):573–591

    Article  Google Scholar 

  • Gibiansky L, Gibiansky E (2017) Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site. J Pharmacokinet Pharmacodyn 44(5):463–475

    Article  Google Scholar 

  • Goussis DA (2012) Quasi steady state and partial equilibrium approximations: their relation and their validity. Combust Theor Model 16(5):869–926

    Article  MathSciNet  Google Scholar 

  • Goussis DA (2013) The role of slow system dynamics in predicting the degeneracy of slow invariant manifolds: the case of vdP relaxation-oscillations. Physica D 248:16–32

    Article  MathSciNet  MATH  Google Scholar 

  • Goussis DA (2015) Model reduction: when singular perturbation analysis simplifies to partial equilibrium approximation. Combust Flame 162(4):1009–1018

    Article  Google Scholar 

  • Goussis DA, Lam SH (1992) A study of homogeneous methanol oxidation kinetics using CSP. Proc Combust Inst 24(1):113–120

    Article  Google Scholar 

  • Goussis DA, Maas U (2011) Model reduction for combustion chemistry. Fluid Mech Appl 95:193–220

    MATH  Google Scholar 

  • Goussis DA, Najm HN (2006) Model reduction and physical understanding of slowly oscillating processes: the circadian cycle. SIAM Multiscale Model Simul 5:1297–1332

    Article  MathSciNet  MATH  Google Scholar 

  • Goussis DA, Skevis G (2005) Nitrogen chemistry controlling steps in methane-air premixed flames. In: Bathe KJ (ed) Computational fluid and solid mechanics. Elsevier, Amsterdam, pp 650–653

    Google Scholar 

  • Hadjinicolaou M, Goussis DA (1998) Asymptotic solution of stiff pdes with the CSP method: the reaction diffusion equation. SIAM J Sci Comput 20(3):781–810

    Article  MathSciNet  MATH  Google Scholar 

  • Hek G (2010) Geometric singular perturbation theory in biological practice. J Math Biol 60(3):347–386

    Article  MathSciNet  MATH  Google Scholar 

  • Kaper TJ (1999) An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In: Cronin J, Robert J, O’Malley E (eds) Analyzing multiscale phenomena using singular perturbation methods. Proceedings of symposia in applied mathematics, vol 56. American Mathematical Society, Baltimore, pp 85–131

    Chapter  Google Scholar 

  • Kaper HG, Kaper TJ, Zagaris A (2015) Geometry of the computational singular perturbation method. Math Model Nat Phenom 10(3):16–30

    Article  MathSciNet  MATH  Google Scholar 

  • Koch G, Jusko WJ, Schropp J (2017) Target-mediated drug disposition with drug-drug interaction, part I: single drug case in alternative formulations. J Pharmacokinet Pharmacodyn 44(1):17–26

    Article  Google Scholar 

  • Koch G, Jusko WJ, Schropp J (2017) Target mediated drug disposition with drug-drug interaction, part II: competitive and uncompetitive cases. J Pharmacokinet Pharmacodyn 44(1):27–42

    Article  Google Scholar 

  • Kooshkbaghi M, Frouzakis CE, Boulouchos K, Karlin IV (2015) n-Heptane/air combustion in perfectly stirred reactors: dynamics, bifurcations and dominant reactions at critical conditions. Combust Flame 162(9):3166–3179

    Article  Google Scholar 

  • Kourdis PD, Goussis DA (2013) Glycolysis in saccharomyces cerevisiae: algorithmic exploration of robustness and origin of oscillations. Math Biosci 243:190–214

    Article  MathSciNet  MATH  Google Scholar 

  • Kourdis PD, Steuer R, Goussis DA (2010) Physical understanding of complex multiscale biochemical models via algorithmic simplification: glycolysis in saccharomyces cerevisiae. Physica D 239(18):1798–1817

    Article  MATH  Google Scholar 

  • Kourdis PD, Palasantza AG, Goussis DA (2013) Algorithmic asymptotic analysis of the NF-\(\kappa \)B signalling system. Comput Math Appl 65:1516–1534

    Article  MathSciNet  MATH  Google Scholar 

  • Kuehn C (2015) Multiple time scale dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lam SH, Goussis DA (1988) Understanding complex chemical kinetics with computational singular perturbation. Proc Combust Inst 22:931–941

    Article  Google Scholar 

  • Lam SH, Goussis DA (1994) CSP method for simplifying kinetics. Int J Chem Kinet 26(4):461–486

    Article  Google Scholar 

  • Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56(3):248–252

    Article  Google Scholar 

  • Lovas T (2012) Model reduction techniques for chemical mechanisms. In: Patel V (ed) Chemical kinetics. InTech, Rijeka, pp 79–114

    Google Scholar 

  • Lu T, Yoo CS, Chen JH, Law CK (2008) Analysis of a turbulent lifted hydrogen/air jet flame from direct numerical simulation with computational singular perturbation. In: 46th AIAA aerospace sciences meeting and exhibit. Paper AIAA-2008-1013

  • Ma P (2012) Theoretical considerations of target-mediated drug disposition models: simplifications and approximations. Pharm Res 29(3):866–882

    Article  Google Scholar 

  • Maas J, Tomlin A (2013) Time-scale splitting-based mechanism reduction. In: Cleaner combustion—green energy and technology. Springer, London, pp 467–484

  • Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72(1):1–10

    Article  Google Scholar 

  • Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532

    Article  Google Scholar 

  • Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596

    Article  Google Scholar 

  • Maris DT, Goussis DA (2015) The hidden dynamics of the Rössler attractor. Physica D 295–296:66–90

    Article  MATH  Google Scholar 

  • Patsatzis DG, Maris DT, Goussis DA (2016) Asymptotic analysis of a target-mediated drug disposition model: algorithmic and traditional approaches. Bull Math Biol 78(6):1121–1161

    Article  MathSciNet  MATH  Google Scholar 

  • Peletier LA, Gabrielsson J (2009) Dynamics of target-mediated drug disposition. Eur J Pharm Sci 38(5):445–464

    Article  MATH  Google Scholar 

  • Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39(5):429–451

    Article  Google Scholar 

  • Schnell S, Grima R, Maini P (2007) Multiscale modeling in biology. Am Sci 95(2):134–142

    Article  Google Scholar 

  • Senthamaraikkannan G, Gates I, Prasad V (2016) Modeling, estimation and optimization in coreflooding experiments for coalbed methane production. Chem Eng Sci 141:75–85

    Article  Google Scholar 

  • Surovtsova I, Simus N, Hübner K, Sahle S, Kummer U (2012) Simplification of biochemical models: a general approach based on the analysis of the impact of individual species and reactions on the systems dynamics. BMC Syst Biol 6(1):14

    Article  Google Scholar 

  • Turányi T, Tomlin AS (2014) Analysis of kinetic reaction mechanisms. Springer, Berlin

    Book  MATH  Google Scholar 

  • Valorani M, Najm HN, Goussis DA (2003) CSP analysis of a transient flame-vortex interaction: time scales and manifolds. Combust Flame 134(1–2):35–53

    Article  Google Scholar 

  • Valorani M, Goussis DA, Creta F, Najm HN (2005) Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method. J Comput Phys 209(2):754–786

    Article  MathSciNet  MATH  Google Scholar 

  • van der Graaf PH, Benson N, Peletier LA (2016) Topics in mathematical pharmacology. J Dyn Differ Equ 28:1337–1356

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Han X, Cao Y, Najm HN (2017) Computational singular perturbation analysis of stochastic chemical systems with stiffness. J Comput Phys 335:404–425

    Article  MathSciNet  MATH  Google Scholar 

  • Zagaris A, Kaper HG, Kaper TJ (2004) Analysis of the computational singular perturbation reduction method for chemical kinetics. J Nonlinear Sci 14(1):59–91

    Article  MathSciNet  MATH  Google Scholar 

  • Zagaris A, Kaper HG, Kaper TJ (2004) Fast and slow dynamics for the computational singular perturbation method. SIAM Multiscale Model Simul 2(4):613–638

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, D’Argenio DZ (2016) Feedback control indirect response models. J Pharmacokinet Pharmacodyn 43(4):343–358

    Article  Google Scholar 

Download references

Acknowledgements

Many useful discussions with Dr. L. Gibiansky are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris A. Goussis.

Appendices

A Appendix: The CSP basis vectors for the \(\hbox {M}=2\) case

Considering the state vector defined as \(\mathbf {y}=[L_d,~L,~L_t,~R,~RL]^T\), the CSP vectors in the case where \(M=2\) are computed as follows. Since the fast variables are R and RL, a proper initial guess is:

$$\begin{aligned} \mathbf {a}_r= & {} \begin{bmatrix} 0&\quad 0\\0&\quad 0\\0&\quad 0\\1&\quad 0\\0&\quad 1 \end{bmatrix} \quad \mathbf {a}_s =\begin{bmatrix} 1&\quad 0&\quad 0 \\ 0&\quad 1&\quad 0 \\ 0&\quad 0&\quad 1 \\ 0&\quad 0&\quad 0 \\ 0&\quad 0&\quad 0 \end{bmatrix}\\ \mathbf {b}^r= & {} \begin{bmatrix} 0&\quad 0&\quad 0&\quad 1&\quad 0\\0&\quad 0&\quad 0&\quad 0&\quad 1 \end{bmatrix} \quad \mathbf {b}^s =\begin{bmatrix} 1&\quad 0&\quad 0&\quad 0&\quad 0 \\ 0&\quad 1&\quad 0&\quad 0&\quad 0 \\0&\quad 0&\quad 1&\quad 0&\quad 0 \end{bmatrix} \end{aligned}$$

With such a choice it is guaranteed that \(\mathbf {a}_r\) has a component in the fast subspace of the tangent space along \(SIM_2\) (Lam and Goussis 1994); i.e., a component along the axis of the fast variables R and RL. After one \(\mathbf {b}^r\) and one \(\mathbf {a}_r\)-refinements, the following CSP vectors are obtained:

$$\begin{aligned} \mathbf {a}_r= & {} \left[ \mathbf {a}_1 ~ \mathbf {a}_2 \right] =\begin{bmatrix} 0&\quad 0 \\ k_{int}k_{on}L XD_{en}/X_1&\quad -k_{deg}k_{off}XD_{en}/X_1\\ 0&\quad 0\\ D_{en}(X^2D_{en}+Zk_{deg}k_{off})/X_1&\quad k_{int}k_{off}ZD_{en}/{X_1}\\ k_{int}k_{on}LZD_{en}/{X_1}&\quad D_{en}(XD_{en}+Yk_{on}L)/X_1 \end{bmatrix}\nonumber \\ \end{aligned}$$
(1)
$$\begin{aligned} \mathbf {a}_s= & {} \left[ \mathbf {a}_3 ~ \mathbf {a}_4 ~ \mathbf {a}_5\right] =\begin{bmatrix} 1&\quad 0&\quad 0 \\ 0&\quad 1&\quad 0\\0&\quad 0&\quad 1\\0&\quad -{YD_{en}}/{X_1}&\quad 0\\0&\quad {ZD_{en}}/{X_1}&\quad 0 \end{bmatrix} \end{aligned}$$
(2)
$$\begin{aligned} \mathbf {b}^r= & {} \begin{bmatrix} 0&\quad Y/X&\quad 0&\quad 1&\quad 0\\0&\quad -Z/X&\quad 0&\quad 0&\quad 1 \end{bmatrix} \end{aligned}$$
(3)
$$\begin{aligned} \mathbf {b}^s= & {} \begin{bmatrix} 1&0&0&0&0 \\ 0&\quad (XD_{en})^2/X_1&\quad 0&\quad -k_{int}k_{on}LXD_{en}/X_1&\quad k_{deg}k_{off}XD_{en}/X_1 \\ 0&\quad 0&\quad 1&\quad 0&\quad 0 \end{bmatrix} \end{aligned}$$
(4)

where as mentioned in Sect. 6:

$$\begin{aligned} X= & {} \frac{k_{deg}(k_{int}+k_{off})+k_{int}k_{on}L}{Den}\\ Y= & {} \frac{k_{int}k_{on}R}{Den} \\ Z= & {} \frac{k_{deg}k_{on}R}{Den} \\ Den= & {} \left( k_{el}+k_{pt}\right) \left[ k_{int}k_{on}L +k_{deg}(k_{int}+k_{off})\right] +k_{deg}k_{int}k_{on}R\\ and~X_1= & {} D_{en}(X^2D_{en}+Zk_{deg}k_{off}+Yk_{int}k_{on}L) \end{aligned}$$

B Appendix: The CSP basis vectors for the \(\hbox {M}=3\) case

Considering the state vector as in “Appendix A”, the CSP vectors in the case where \(M=3\) are computed as follows. Since the variables associated the most to the fast time scales are L, RL and R, a proper initial guess is:

$$\begin{aligned} \mathbf {a}_r= & {} \begin{bmatrix} 0&\quad 0&\quad 0\\1&\quad 0&\quad 0\\0&\quad 0&\quad 0\\0&\quad 0&\quad 1\\0&\quad 1&\quad 0 \end{bmatrix} \quad \mathbf {a}_s=\begin{bmatrix} 1&\quad 0\\ 0&\quad 0\\ 0&\quad 1 \\ 0&\quad 0 \\ 0&\quad 0 \end{bmatrix}\\ \mathbf {b}^r= & {} \begin{bmatrix} 0&\quad 1&\quad 0&\quad 0&\quad 0\\0&\quad 0&\quad 0&\quad 0&\quad 1\\0&\quad 0&\quad 0&\quad 1&\quad 0 \end{bmatrix} \quad \mathbf {b}^s=\begin{bmatrix} 1&\quad 0&\quad 0&\quad 0&\quad 0 \\ 0&\quad 0&\quad 1&\quad 0&\quad 0 \end{bmatrix} \end{aligned}$$

With such a choice it is guaranteed that \(\mathbf {a}_r\) has a component in the fast subspace of the tangent space along \(SIM_3\) (Lam and Goussis 1994); i.e., a component along the axis of the fast variables L, RL and R. After one \(\mathbf {b}^r\) and one \(\mathbf {a}_r\)-refinements, the following CSP vectors are obtained:

$$\begin{aligned} \mathbf {a}_r= & {} \begin{bmatrix} 0&\quad 0&\quad 0\\&\quad&\quad \\ \dfrac{S_1}{S}&\quad -\dfrac{S_2}{S}&\quad \dfrac{S_3}{S}\\&\quad&\quad \\dfrac{S_4}{S}&\quad -\dfrac{S_5}{S}&\quad \dfrac{S_6}{S}\\&\quad&\quad \\ \dfrac{S_7}{S}&\quad \dfrac{S_8}{S}&\quad \dfrac{S_9}{S}\\&\quad&\quad \\dfrac{S_{10}}{S}&\quad \dfrac{S_{11}}{S}&\quad \dfrac{S_{12}}{S} \end{bmatrix} \end{aligned}$$
(1)
$$\begin{aligned} \mathbf {a}_s= & {} \begin{bmatrix} 1&\quad 0\\ \dfrac{k_aX}{X(k_{el}+k_{pt})+k_{deg}Y}&\quad \dfrac{k_{tp}X}{X(k_{el} +k_{pt})+k_{deg}Y}\\ 0&\quad 1 \\ -\dfrac{k_aY}{X(k_{el}+k_{pt})+k_{deg}Y}&\quad -\dfrac{k_{tp}Y}{X(k_{el} +k_{pt})+k_{deg}Y} \\ \dfrac{k_aZ}{X(k_{el}+k_{pt})+k_{deg}Y}&\quad \dfrac{k_{tp}Z}{X(k_{el} +k_{pt})+k_{deg}Y} \end{bmatrix} \end{aligned}$$
(2)

where

  • \(S_1=D_{en}(X(k_{el}+k_{pt})+Yk_{deg})^2+k_{pt}k_{tp}(2k_{deg} k_{off}Z k_{int}k_{on}LY)\)

  • \(S_2=k_{deg}k_{off}k_{pt}k_{tp}X\)

  • \(S_3=k_{int}k_{on}k_{pt}k_{tp}LX\)

  • \(S_4=D_{en}Xk_{pt}(X(k_{el}+k_{pt})+Yk_{deg})\)

  • \(S_5=k_{deg}k_{off}k_{pt}(X(k_{el}+k_{pt})+Yk_{deg})\)

  • \(S_6=k_{int}k_{on}k_{pt}L(X(k_{el}+k_{pt})+Yk_{deg})\)

  • \(S_7=D_{en}XYk_{pt}k_{tp}\)

  • \(S_8=k_{deg}k_{off}k_{pt}k_{tp}Y\)

  • \(S_9=D_{en}(X(k_{el}+k_{pt})+k_{deg}Y)^2+k_{pt}k_{tp}(X^2D_{en} +k_{deg}k_{off}Z)\)

  • \(S_{10}=D_{en}XZk_{pt}k_{tp}\)

  • \(S_{11}=D_{en}((k_{el}+k_{pt})X+Yk_{deg})^2+k_{pt}k_{tp}(D_{en}X^2 +k_{int}k_{on}LY)\qquad +2k_{deg}^2(k_{el}+k_{pt})(k_{off}+k_{int})Y\)

  • \(S_{12}=k_{pt}k_{tp}k_{deg}k_{on}LY\)

  • \(S=D_{en}(X(k_{el}+k_{pt}+Yk_{deg})^2+k_{pt}k_{tp}(X^2D_{en} +k_{deg}k_{off}Z)\)

$$\begin{aligned} \mathbf {b}^r= & {} \begin{bmatrix} \mathbf {b}^1\\ \mathbf {b}^2 \\ \mathbf {b}^3 \end{bmatrix} =\begin{bmatrix} -k_aX&\quad 1&\quad -k_{tp}X&\quad 0&\quad 0 \\ -k_aZ&\quad 0&\quad -k_{tp}Z&\quad 0&\quad 1\\ k_aY&\quad 0&\quad k_{tp}Y&\quad 1&\quad 0 \end{bmatrix} \end{aligned}$$
(3)
$$\begin{aligned} \mathbf {b}^s= & {} \begin{bmatrix} \mathbf {b}^4\\ \mathbf {b}^5 \end{bmatrix} =\begin{bmatrix} 1&\quad 0&\quad 0&\quad 0&\quad 0 \\ -\dfrac{H_2}{H_1}&\quad \dfrac{H_3}{H_1}&\quad \dfrac{H_4}{H_1}&\quad -\dfrac{H_5}{H_1}&\quad \dfrac{H_6}{H_1} \end{bmatrix} \end{aligned}$$
(4)

where

  • \(H_1=D_{en}^2+k_{pt}k_{tp}X_1\)

  • \(H_2=k_ak_{pt}X_1\)

  • \(H_3=k_{pt}XD_{en}^2(X(k_{el}+k_{pt}+k_{int}Z)\)

  • \(H_4=((k_{el}+k_{pt})XD_{en}+k_{int}ZD_{en})^2\)

  • \(H_5=k_{pt}k_{int} k_{on} L ((k_{el}+k_{pt}) XD_{en}+k_{int}ZD_{en})\)

  • \(H_6=k_{pt}k_{deg} k_{off} ((k_{el}+k_{pt})XD_{en} +k_{int}ZD_{en})\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michalaki, L.I., Goussis, D.A. Asymptotic analysis of a TMDD model: when a reaction contributes to the destruction of its product. J. Math. Biol. 77, 821–855 (2018). https://doi.org/10.1007/s00285-018-1234-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1234-x

Keywords

Mathematics Subject Classification

Navigation