Skip to main content
Log in

Exploring stochasticity and imprecise knowledge based on linear inequality constraints

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper explores the stochastic dynamics of a simple foodweb system using a network model that mimics interacting species in a biosystem. It is shown that the system can be described by a set of ordinary differential equations with real-valued uncertain parameters, which satisfy a set of linear inequality constraints. The constraints restrict the solution space to a bounded convex polytope. We present results from numerical experiments to show how the stochasticity and uncertainty characterizing the system can be captured by sampling the interior of the polytope with a prescribed probability rule, using the Hit-and-Run algorithm. The examples illustrate a parsimonious approach to modeling complex biosystems under vague knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bélisle C, Boneh A, Caron RJ (1998) Convergence properties of hit-and-run samplers. Stoch Models 14(4):767-800

    Article  MathSciNet  MATH  Google Scholar 

  • Bélisle CJP, Romeijn HE, Smith RL (1993) Hit-and-run algorithms for generating multivariate distributions. Math Oper Res 18(2):255-266

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas D, Thiele A (2006) Robust and data-driven optimization: modern decision-making under uncertainty. INFORMS tutorials in operations research: models, methods, and applications for innovative decision making

  • Boneh A, Golan A (1979) Constraints’ redundancy and feasible region boundedness by random feasible point generator (rfpg). In: Third European congress on operations research (EURO III), Amsterdam

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Büeler B, Enge A, Fukuda K (2000) Exact volume computation for polytopes: a practical study. In: Polytopes-combinatorics and computation. Springer, New York, pp 131-154

  • Chen MH, Schmeiser BW (1996) General hit-and-run monte carlo sampling for evaluating multidimensional integrals. Oper Res Lett 19(4):161-169

    Article  MathSciNet  MATH  Google Scholar 

  • Delbos F, Gilbert JC et al (2003) Global linear convergence of an augmented lagrangian algorithm for solving convex quadratic optimization problems

  • Dyer M, Frieze A, Kannan R (1991) A random polynomial-time algorithm for approximating the volume of convex bodies. J ACM (JACM) 38(1):1-17

    Article  MathSciNet  MATH  Google Scholar 

  • Dyer ME, Frieze AM (1988) On the complexity of computing the volume of a polyhedron. SIAM J Comput 17(5):967-974

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman A, Shirley K (2011) Inference from simulations and monitoring convergence. Handbook of Markov chain Monte Carlo, pp 163-174

  • Hug D, Reitzner M (2005) Gaussian polytopes: variances and limit theorems. Adv Appl Prob 297-320

  • Isukapalli SS, Roy A, Georgopoulos PG (1998) Stochastic response surface methods (srsms) for uncertainty propagation: application to environmental and biological systems. Risk Anal 18(3):351-363

    Article  Google Scholar 

  • Jones GL, Hobert JP (2004) Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann Stat 784-817

  • Judge GG, Takayama T (1966) Inequality restrictions in regression analysis. J Am Stat Assoc 61(313):166-181

    Article  MathSciNet  MATH  Google Scholar 

  • Kaufman DE, Smith RL (1998) Direction choice for accelerated convergence in hit-and-run sampling. Oper Res 46:84-95

    Article  MathSciNet  MATH  Google Scholar 

  • Koop G, Potter SM (2011) Time varying VARs with inequality restrictions. J Econ Dyn Control 35(7):1126-1138

    Article  MathSciNet  MATH  Google Scholar 

  • Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo methods, vol 706. Wiley, New York

    Book  MATH  Google Scholar 

  • Kvasnica M (2009) Real-time model predictive control via multi-parametric programming: theory and tools. VDM Verlag, Saarbruecken

    Google Scholar 

  • Lasserre JB, Zeron ES (2001) A Laplace transform algorithm for the volume of a convex polytope. J ACM (JACM) 48(6):1126-1140

    Article  MathSciNet  MATH  Google Scholar 

  • Lazar R, Meeden G (2003) Exploring imprecise probability assessments based on linear constraints. ISIPTA 3:361-371

    Google Scholar 

  • Liu S, Zhang J, Zhu B (2007) Volume computation using a direct Monte Carlo method. Comput Combin 198-209

  • Lovász L (1999) Hit-and-run mixes fast. Math Program 86(3):443-461

    Article  MathSciNet  MATH  Google Scholar 

  • Lovász L, Vempala S (2006) Simulated annealing in convex bodies and an O*$(n^{4})$ volume algorithm. J Computer Syst Sci 72(2):392-417

    Article  MathSciNet  MATH  Google Scholar 

  • Mullon C, Fréon P, Cury P, Shannon L, Roy C (2009) A minimal model of the variability of marine ecosystems. Fish Fish 10:115-131

    Article  Google Scholar 

  • Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  MATH  Google Scholar 

  • Planque B, Lindstrøm U, Subbey S (2014) Non-deterministic modelling of food-web dynamics. PloS one 9(10):e108,243

    Article  Google Scholar 

  • Polovina JJ (1984) An overview of the Ecopath model. FishByte 2:5-7

    Google Scholar 

  • Roese-Koerner L, Devaraju B, Sneeuw N, Schuh WD (2012) A stochastic framework for inequality constrained estimation. J Geodesy 86(11):1005-1018

    Article  Google Scholar 

  • Shao QM, Ibrahim JG (2000) Monte Carlo methods in Bayesian computation. Springer Series in Statistics, New York

    MATH  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis, vol 26. CRC press, Boca Raton

    Book  MATH  Google Scholar 

  • Sivia DS (1996) Data analysis: a Bayesian tutorial. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Smith RL (1980) Monte Carlo procedures for generating random feasible solutions to mathematical programs. In: A Bulletin of the ORSA/TIMS Joint National Meeting, Washington, DC, vol 101

  • Smith RL (1984) Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper Res 32(6):1296-1308

    Article  MathSciNet  MATH  Google Scholar 

  • Smith RL (1996) The hit-and-run sampler: a globally reaching Markov chain sampler for generating arbitrary multivariate distributions. In: Proceedings of the 1996 winter simulation conference, pp 260-264

  • Turlach BA (1993) Bandwidth selection in kernel density estimation: a review. Université catholique de Louvain

  • Verhoef HA, Olff H (2010) Trophic dynamics of communities. Commun Ecol Process Models Appl 25-36

  • Wolak FA (1989) Testing inequality constraints in linear econometric models. J Econ 41(2):205-235

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu J, Santerre R, Chang XW (2005) A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning. J Geodesy 78(9):528-534

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partly funded by the IMR Research Program on Marine Processes and Human Influence, ADMAR (RCN Project No. 200497/I30), and KOFA (IMR project 14452-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Subbey.

Appendix: Basic definitions

Appendix: Basic definitions

The following definitions are mostly adapted from Kvasnica (2009).

Definition 1

(Convexity) A set of points S in the n-dimensional space is convex, if the line segment connecting any two points \(x_{1},x_{2} \in S\), belongs completely in S. That is

$$\begin{aligned} S\; \text{ convex } \Leftrightarrow \forall \; x_{1},x_{2} \in S, \forall \; \kappa \in (0,1): (1-\kappa )x_{1} + \kappa x_{2} \in S. \end{aligned}$$

Definition 2

(Polyhedron) A convex set \(\mathcal {Q}\subseteq \mathcal {R}^{n}\) given as an intersection of a finite number of closed half-spaces \(\mathcal {Q} = \{x\in \mathcal {R}^{n}|Q^{x}x \le Q^{c}\}\), is called a polyhedron.

Definition 3

(Polytope) A bounded polyhedron \(\mathcal {P}\subset \mathcal {R}^{n}\) is called a polytope if

$$\begin{aligned} \mathcal {P} = \{x\in \mathcal {R}^{n}|P^{x}x \le P^{c}\}. \end{aligned}$$

By definition, every polytope represents a convex, bounded and closed set.

Definition 4

(Convex Hull) The convex hull of a set of points is the smallest convex region containing all points in the set.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbey, S., Planque, B. & Lindstrøm, U. Exploring stochasticity and imprecise knowledge based on linear inequality constraints. J. Math. Biol. 73, 575–595 (2016). https://doi.org/10.1007/s00285-015-0959-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0959-z

Keywords

Mathematics Subject Classification

Navigation