Skip to main content

Reproduction Number Versus Turnover Number in Structured Discrete-Time Population Models

  • Conference paper
  • First Online:
Advances in Discrete Dynamical Systems, Difference Equations and Applications (ICDEA 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 416))

Included in the following conference series:

Abstract

The analysis of the discrete-time dynamics of structured iteroparous populations involves a basic yearly turnover operator \(B = A + H\) with a structural transition operator A and a mating and fertility operator H. A and H map a normal complete cone \(X_+\) of an ordered normed vector space X into itself and are (positively) homogenous and continuous on \(X_+\), A is additive and H is order-preserving. Assume that \(\textbf{r}(A) < 1\) for the spectral radius of A. Let \(H R_1\) with \(R_1 = \sum _{j=0}^\infty A^j\) be the next generation operator and \({\mathcal T}= \textbf{r}(B)\), the spectral radius of B, be the (basic) turnover number and \({\mathcal R}= \textbf{r}( H R_1)\) be the (basic) reproduction number. We explore conditions for a turnover/reproduction trichotomy, namely one (and only one) of the following three possibilities to hold:       (i) \(1 < {\mathcal T}\le {\mathcal R}\),    (ii) \(1 = {\mathcal T}= {\mathcal R}\),    (iii) \( 1 > {\mathcal T}\ge {\mathcal R}\). In some cases, one may also like to consider the lower reproduction number \( {\mathcal R}_\diamond = \lim _{\lambda \rightarrow 1+} \textbf{r}(H R_\lambda )\), \(R_\lambda = \sum _{j=0}^\infty \lambda ^{-(n+1)} A^n\). \({\mathcal R}_\diamond \) is also useful to study the case \(\textbf{r}(A) =1\) to explore conditions for the dichotomy       \( 1 = {\mathcal T}\ge {\mathcal R}_\diamond \)    or    \( 1 < {\mathcal T}\le {\mathcal R}_\diamond \le \infty \).

Dedicated to Odo Diekmann on the occasion of his 75th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akian, M., Gaubert, S., Nussbaum, R.D.: A Collatz-Wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones. arXiv:1112.5968v2 [math.FA]

  2. Aliprantis, C.D., Border, K.C.: Infinite dimensional analysis. In: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (1999, 2006)

    Google Scholar 

  3. Allen, L.J.S., van den Driessche, P.: The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl. 14, 1127–1147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bacaër, N., Ait Dads, E.H.: On the biological interpretation of a definition for the parameter R0 in periodic population models. J. Math. Biol. 65, 601–621 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonsall, F.F.: Endomorphisms of a partially ordered vector space without order unit. J. London Math. Soc. 30, 144–153 (1954)

    MathSciNet  MATH  Google Scholar 

  6. Bonsall, F.F.: Linear operators in complete positive cones. Proc. London Math. Soc. 8, 53–75 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caswell, H.: Matrix Population Models - Construction, Analysis, and Interpretation. Sinauer Associates Inc, Sunderland (1989)

    Google Scholar 

  8. Cushing, J.M.: On the relationship between \(r\) and \(R_0\) and its role in the bifurcation of stable equilibria of Darwinian matrix models. J. Biol. Dyn. 5, 277–297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cushing, J.M., Ackleh, A.S.: A net reproductive number for periodic matrix models. J. Biol. Dyn. 6, 166–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cushing, J.M., Diekmann, O.: The many guises of \(R_0\) (a didactic note). J. Theor. Biol. 404, 295–302 (2016)

    Article  MATH  Google Scholar 

  11. Cushing, J.M., Zhou, Y.: The net reproductive value and stability in matrix population models. Nat. Res. Mod. 8, 297–333 (1994)

    Article  Google Scholar 

  12. Diekmann, O., Gyllenberg, M., Metz, J.A.J., Thieme H.R.: The ’cumulative’ formulation of (physiologically) structured population models. In: Clément, P., Lumer, G., (eds.), Evolution Equations, Control Theory, and Biomathematics, pp. 145–154. Marcel Dekker (1994)

    Google Scholar 

  13. Diekmann, O., Heesterbeek, J.A.P., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, Princeton (2013)

    MATH  Google Scholar 

  14. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eager, E.A., Rebarber, R., Tenhumberg, B.: Modeling and analysis of a density-dependent stochastic integral projection model for a disturbance specialist plant and its seed bank. Bull. Math. Biol. 76, 1809–1834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ellner, S.P., Childs, D., Rees, M.: Data-driven Modelling of Structured Populations: a Practical Guide to the Integral Projection Model. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  17. Ellner, S.P., Rees, M.: Stochastic stable population growth in integral projection models: theory and application. J. Math. Biol. 54, 227–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farrell, A.P., Collins, J.P., Greer, A.L., Thieme, H.R.: Do fatal infectious diseases eradicate host species? J. Math. Biol. 77, 2103–2164 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gelfand, I.M.: Normierte Ringe. Mat. Sbornik NS 9, 3–24 (1941)

    Google Scholar 

  20. Gwiazda, P.A., Marciniak-Czochra, A., Thieme, H.R.: Measures under the flat norm as ordered normed vector space. Positivity 22, 105–138 (2018). Correction Positivity 22, 139–140 (2018)

    Google Scholar 

  21. Hadeler, K.P., Waldstätter, R., Wörz-Busekros, A.: Models for pair formation in bisexual populations. J. Math. Biol. 26, 635–649 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Iannelli, M., Martcheva, M., Milner, F.A.: Gender-Structured Population Models: Mathematical Methods. Numerics, and Simulations. SIAM, Philadelphia (2005)

    Google Scholar 

  23. Inaba, H.: Age-Structured Population Dynamics in Demography and Epidemiology. Springer, Singapore (2017)

    Book  MATH  Google Scholar 

  24. Jin, W., Smith, H.L., Thieme, H.R.: Persistence versus extinction for a class of discrete-time structured population models. J. Math. Biol. 72, 821–850 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin, W., Thieme, H.R.: An extinction/persistence threshold for sexually reproducing populations: the cone spectral radius. Disc. Cont. Dyn. Sys. - B 21, 447–470 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kot, M., Schaffer, W.M.: Discrete-time growth-dispersal models. Math. Biosci. 80, 109–136 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kato, T.: Superconvexity of the spectral radius, and convexity of the spectral bound and the type. Math. Z. 180, 265–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  29. Krasnosel’skij, M.A.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)

    Google Scholar 

  30. Krause, U.: Positive Dynamical Systems in Discrete Time. Theory, Models, and Applications. De Gruyter Studies in Mathematics, vol. 62, De Gruyter, Berlin (2015)

    Google Scholar 

  31. Lemmens, B., Nussbaum, R.D.: Nonlinear Perron-Frobenius Theory. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  32. Lemmens, B., Nussbaum, R.D.: Continuity of the cone spectral radius. Proc. Amer. Math. Soc. 141, 2741–2754 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lewis, M.A., Marculis, N.G., Shen, Z.: Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics. J. Math. Biol. 77, 1649–1687 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, C.-K., Schneider, H.: Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 44, 450–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lutscher, F.: Integrodifference Equations in Spatial Ecology. Springer, Cham (2019)

    Book  MATH  Google Scholar 

  36. Mallet-Paret, J., Nussbaum, R.D.: Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index. J. Fixed Point Theory Appl. 7, 103–143 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Miller, T.E.X., Inouye, B.D.: Confronting two-sex demographic models with data. Ecology 92, 2141–2151 (2011)

    Article  Google Scholar 

  38. Miller, T.E.X., Shaw, A.K., Inouye, B.D., Neubert, M.G.: Sex-biased dispersal and the speed of two-sex invasions. Amer. Nat. 177, 549–561 (2011)

    Article  Google Scholar 

  39. Nussbaum, R.D.: Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem. In: Fadell, E., Fournier, G., (eds.), Fixed Point Theory, pp. 309–331. Springer, Berlin (1981)

    Google Scholar 

  40. Nussbaum, R.D., Walsh, B.: Approximation by polynomials with nonnegative coefficients and the spectral theory of positive operators. Trans. AMS 350, 2367–2391 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schaefer, H.H.: Topological Vector Spaces. MacMillan, Lodon (1966)

    MATH  Google Scholar 

  42. Schaefer H:H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

    Google Scholar 

  43. Thieme, H.R.: On a class of Hammerstein integral equations. Manuscrip. Math. 29, 49–84 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  44. Thieme, H.R.: Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm. In: de Jeu, M., de Pagter, B., van Gaans, O., Veraar, M., (eds.), Ordered Structures and Applications. Trends Math., pp. 415–467. Birkhäuser/Springer, Cham (2016)

    Google Scholar 

  45. Thieme, H.R.: Eigenvectors of homogeneous order-bounded order-preserving maps. Disc. Cont. Dyn. Syst. B 22, 1073–1097 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Thieme, H.R.: Eigenfunctionals of homogeneous order-preserving maps with applications to sexually reproducing populations. J. Dyn. Differ. Equ. 28, 1115–1144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Thieme, H.R.: From homogeneous eigenvalue problems to two-sex population dynamics. J Math. Biol. 75, 783–804 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Thieme, H.R.: Discrete-time population dynamics on the state space of measures. Math. Biosci. Engin. 17, 1168–1217 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Thieme, H.R.: Persistent discrete-time dynamics on measures. In: Baigent, S., Elaydi, S., Bohner, M., (eds.), Progress on Difference Equations and Discrete Dynamical Systems. Springer Proceedings in Mathematics and Statistics, vol. 341, pp. 59–100. Springer Nature Switzerland AG (2020)

    Google Scholar 

  50. Thieme, H.R.: Discrete-time dynamics of structured populations via Feller kernels. Disc. Cont. Dyn. Sys. B 27, 1091–1119 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Thieme, H.R.: Discrete-time population dynamics of spatially distributed semelparous two-sex populations. J. Math. Biology 83, 40 (2021)

    Google Scholar 

  52. van den Driessche, P., Yakubu, A.-A.: Disease extinction versus persistence in discrete-time epidemic models. Bull. Math. Biol. 81, 4412–4446 (2019)

    Google Scholar 

  53. Wu, R., Zhao, X.-Q.: Propagation dynamics for a spatially periodic integrodifference competition model. J. Differ. Equ. 264, 6507–6534 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yosida, K.: Functional Analysis, 2nd edn. Springer, Berlin (1965–1968)

    Google Scholar 

Download references

Acknowledgements

The author thanks Odo Diekmann and Roger Nussbaum for helpful comments and two anonymous referees for their constructive remarks. Special thanks goes to Senada Kalabusic for the extraordinary help in adapting the script to the style demands of the proceedings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst R. Thieme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thieme, H.R. (2023). Reproduction Number Versus Turnover Number in Structured Discrete-Time Population Models. In: Elaydi, S., Kulenović, M.R.S., Kalabušić, S. (eds) Advances in Discrete Dynamical Systems, Difference Equations and Applications. ICDEA 2021. Springer Proceedings in Mathematics & Statistics, vol 416. Springer, Cham. https://doi.org/10.1007/978-3-031-25225-9_23

Download citation

Publish with us

Policies and ethics