Skip to main content
Log in

Continuum modeling and numerical simulation of cell motility

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This work proposes a continuum-mechanical model of cell motility which accounts for the dynamics of motility-relevant protein species. For the special case of fish epidermal keratocytes, the stress and cell-substrate traction responses are postulated to depend on selected protein densities in accordance with the structural features of the cells. A one-dimensional version of the model is implemented using Arbitrary Lagrangian–Eulerian finite elements in conjunction with Lagrange multipliers for the treatment of kinematic constraints related to surface growth. Representative numerical tests demonstrate the capacity of the proposed model to simulate stationary and steady crawling states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asai H (1974) Diffusion process of myosin and utilization of ATP energy in F-actin solution. J Phys Soc Jpn 36(4): 1114–1120

    Article  Google Scholar 

  • Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2(11): 715–725

    Article  Google Scholar 

  • Bausch AR, Kroy K (2006) A bottom-up approach to cell mechanics. Nat Phys 2(4): 231–238

    Article  Google Scholar 

  • Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75(4): 2038–2049

    Article  Google Scholar 

  • Benson DJ (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2–3): 235–394

    Article  MathSciNet  MATH  Google Scholar 

  • Bray D (2001) Cell movements: from molecules to motility, 2nd edn. Garland Publishing, New York

    Google Scholar 

  • Choi YS, Lee J, Lui R (2004) Traveling wave solutions for a one-dimensional crawling nematode sperm cell model. J Math Biol 49(3): 310–328

    Article  MathSciNet  MATH  Google Scholar 

  • Cooper MS, Schliwa M (1986) Motility of cultured fish epidermal cells in the presence and absence of direct current electric fields. J Cell Biol 102(4): 1384–1399

    Article  Google Scholar 

  • Demmel J (1997) Applied numerical linear algebra. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Demmel JW, Eisenstat SC, Gilbert JR, Li XS, Liu JWH (1999) A supernodal approach to sparse partial pivoting. SIAM J Matrix Anal Appl 20(3): 720–755

    Article  MathSciNet  MATH  Google Scholar 

  • DiMilla PA, Barbee K, Lauffenburger DA (1991) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60(1): 15–37

    Article  Google Scholar 

  • Donea J (1983) Arbitrary Lagrangian-Eulerian finite element methods. In: Belytschko T, Hughes TJR (eds) Computational methods for transient analysis. North-Holland, Amsterdam, pp 473–516

    Google Scholar 

  • Garlick PJ, McNurlan MA, Preedy VR (1980) A rapid and convenient technique fo measuring the rate of protein synthesis in tissues by injection of [3H] phenylalanine. Biochem J 192(2): 719–723

    Google Scholar 

  • Gracheva ME, Othmer HG (2004) A continuum model of motility in ameboid cells. Bull Math Biol 66(1): 167–193

    Article  MathSciNet  Google Scholar 

  • Herant M, Dembo M (2010) Form and function in cell motility: from fibroblasts to keratocytes. Biophys J 98(8): 1408–1417

    Article  Google Scholar 

  • Hodge N, Papadopoulos P (2010) A continuum theory of surface growth. Proc R Soc A: Math Phys Eng Sci 466(2123): 3135–3152

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York

    MATH  Google Scholar 

  • Kuusela E, Alt W (2008) Continuum model of cell adhesion and migration. J Math Biol 58(1–2): 135–161

    MathSciNet  Google Scholar 

  • Larripa K, Mogilner A (2006) Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell. Phys A 372: 113–123

    Article  Google Scholar 

  • Maree AFM, Jilkine A, Dawes A, Grieneisen VA, Edelstein-Keshet L (2006) Polarization and movement of keratocytes: a multiscale modelling approach. Bull Math Biol 68(5): 1169–1211

    Article  Google Scholar 

  • Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover, New York

    Google Scholar 

  • Mogilner A, Keren K (2009) The shape of motile cells. Curr Biol 19(17): R762–R771

    Article  Google Scholar 

  • Newmark NM (1959) Method of computation for structural dynamics. American Society of Civil Engineers: Proceedings 85(EM3, Part 1):67–94

  • Nishimura SI, Ueda M, Sasai M (2009) Cortical factor feedback model for cellular locomotion and cytofission. PLoS Comput Biol 5(3): e1000310

    Article  Google Scholar 

  • Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616): 537–540

    Article  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4): 453–465

    Article  Google Scholar 

  • Ragsdale GK, Phelps J, Luby-Phelps K (1997) Viscoelastic response of fibroblasts to tension transmitted through adherens junctions. Biophys J 73(5): 2798–2808

    Article  Google Scholar 

  • Rubinstein B, Jacobson K, Mogilner A (2005) Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model Simul 3(2): 413–439

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinstein B, Fournier MF, Jacobson K, Verkhovsky AB, Mogilner A (2009) Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys J 97(7): 1853–1863

    Article  Google Scholar 

  • Schmidt FG, Ziemann F, Sackmann E (1996) Shear field mapping in actin networks by using magnetic tweezers. Eur Biophys J 24(5): 348–353

    Article  Google Scholar 

  • Shao D, Rappel W, Levine H (2010) Computational model for cell morphodynamics. Phys Rev Lett 105(10): 108104

    Article  Google Scholar 

  • Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2): 153–173

    Article  MathSciNet  MATH  Google Scholar 

  • Stricker J, Falzone T, Gardel ML (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43(1): 9–14

    Article  Google Scholar 

  • Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG (1997) Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J Cell Biol 139(2): 397–415

    Article  Google Scholar 

  • Verkhovsky AB, Svitkina TM, Borisy GG (1999) Self-polarization and directional motility of cytoplasm. Curr Biol 9(1): 11–20

    Article  Google Scholar 

  • Washizu K (1982) Variational methods in elasticity and plasticity, 3rd edn. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Webb DJ, Parsons JT, Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat Cell Biol 4(4): E97–E100

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL, Sherwin SJ, Peiro J (2003) On discontinuous Galerkin methods. Int J Numer Methods Eng 58(8): 1119–1148

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panayiotis Papadopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodge, N., Papadopoulos, P. Continuum modeling and numerical simulation of cell motility. J. Math. Biol. 64, 1253–1279 (2012). https://doi.org/10.1007/s00285-011-0446-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0446-0

Keywords

Mathematics Subject Classification (2000)

Navigation