Skip to main content
Log in

Shear field mapping in actin networks by using magnetic tweezers

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

An improved magnetic bead microrheometer based on phase contrast microscopy allowing high resolution measurements of local deformations within macromolecular networks is applied to study local viscoelastic properties of cross-linked actin networks. By embedding non-magnetic colloidal beads as probes into the networks, the spatial variation of the strain field within cross-linked actin networks can be mapped. Moreover, the Poisson ratio and shear modulus can be measured locally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Darnell J, Lodish H, Baltimore D (1990) Molecular cell biology. Scientific American Books, New York

    Google Scholar 

  • Door R, Frösch D, Martin R (1991) Estimation of section thickness and quantification of iron standards with EELS. J Microsc 162: 15–22

    Google Scholar 

  • Elias HG (1971) Makromoleküle. Struktur, Eigenschaften, Synthesen, Stoffe. Hüthig & Wepf, Basel

    Google Scholar 

  • Evans E, Ritchie K, Merkel R (1995) Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J 68: 2580–2587

    Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368: 113–119

    Google Scholar 

  • Ishijima A, Doi T, Sakurada K, Yanagida T (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352:301–306 Kuo SC, Sheetz MP (1992) Optical tweezers in cell biology. TIBS 2: 116–118

    Google Scholar 

  • Landau LD, Lifshitz EM (1959) Course of theoretical physics, Vol 6. Fluid mechanics. Pergamon Press, London

    Google Scholar 

  • Landau LD, Lifshitz EM (1959) Course of theoretical physics, Vol 7. Theory of elasticity. Pergamon Press, London

    Google Scholar 

  • Müller O (1991) Entwicklung eines Rheometers zur Untersuchung viskoelastischer Eigenschaften membranassoziierter Aktinnetzwerke im verdünnten and halbverdünnten Bereich. Doctoral thesis, TU München

  • Müller O, Gaub HE, Bärmann M, Sackmann E (1991) Viscoelastic moduli of sterically and chemically cross-linked actin networks in the dilute to semi-dilute regime: measurements by an oscillating disk rheometer. Macromolecules 24: 3111–3120

    Article  MATH  Google Scholar 

  • Piekenbrock T, Sackmann E (1992) Quasielastic light scattering study of thermal excitations of F-actin solutions and of growth kinetics of actin filaments. Biopolymers 32: 1471–1489

    Google Scholar 

  • Ruddies R, Goldmann WH, Isenberg G, Sackmann E (1992) The viscoelastic moduli of actin/filamin solutions: A micro-rheologic study. Biochem Soc Trans 21: 37S

  • Ruddie R, Goldmann WH, Isenberg G, Sackmann E (1993) The viscoelasticity of entangled actin networks: the influence of defects and modulation by talin and vinculin. Eur Biophys J 22: 309–321

    Google Scholar 

  • Sackmann E (1994) Intra- and extracellular macromolecular networks: physics and biological function. Macromol Chem Phys 195: 7–28

    Google Scholar 

  • Schindl M, Wallraff E, Deubzer B, Witke W, Gerisch G, Sackmann E (1995) Cell-substrate interactions and locomotion of dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy. Biophys J 68: 1177–1190

    Google Scholar 

  • Schleicher M, Gerisch G, Isenberg G (1984) New actin-binding proteins from dyctostelium discoideum. EMBO (Eur Mol Biol Organ) J 3: 2095–2100

    Google Scholar 

  • Schmidt C (1988) Struktur und Dynamik polymerer Aktinnetzwerke und ihre Wechselwirkung mit Modellmembranen. Doctoral thesis, TU München

  • Stossel TP (1994) The machinery of cell crawling. Sci Amer 271 (3): 54–55, 58–63

    Google Scholar 

  • Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365: 721–727

    Google Scholar 

  • Wachsstock DH, Schwarz WH, Pollard TD (1993) Affinity of α-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys 165: 205–214

    Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124–1127

    Google Scholar 

  • Zaner KS, Valberg PA (1989) Viscoelasticity of F-actin measured with magnetic microparticles. J Cell Biol 109: 2233–2243

    Google Scholar 

  • Ziemann F, Rädler J, Sackmann E (1994) Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead microrheometer. Biophys 166: 2210–2216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, F.G., Ziemann, F. & Sackmann, E. Shear field mapping in actin networks by using magnetic tweezers. Eur Biophys J 24, 348–353 (1996). https://doi.org/10.1007/BF00180376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00180376

Key words

Navigation