Skip to main content

Advertisement

Log in

A differential equation model for functional mapping of a virus-cell dynamic system

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The dynamic pattern of viral load in a patient’s body critically depends on the host’s genes. For this reason, the identification of those genes responsible for virus dynamics, although difficult, is of fundamental importance to design an optimal drug therapy based on patients’ genetic makeup. Here, we present a differential equation (DE) model for characterizing specific genes or quantitative trait loci (QTLs) that affect viral load trajectories within the framework of a dynamic system. The model is formulated with the principle of functional mapping, originally derived to map dynamic QTLs, and implemented with a Markov chain process. The DE-integrated model enhances the mathematical robustness of functional mapping, its quantitative prediction about the temporal pattern of genetic expression, and therefore its practical utilization and effectiveness for gene discovery in clinical settings. The model was used to analyze simulated data for viral dynamics, aimed to investigate its statistical properties and validate its usefulness. With an increasing availability of genetic polymorphic data, the model will have great implications for probing the molecular genetic mechanism of virus dynamics and disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertsekas DP (2003) Nonlinear programming, 2nd edn. Athena Scientific, Belmont

    Google Scholar 

  • Bonhoeffer S, Coffin JM, Nowak MA (1997) Human immuodeficiency virus drug therapy and virus load. J Virol 71: 6971–6976

    Google Scholar 

  • Bonhoeffer S, May RM, Shaw GM, Nowak MA (1999) Virus dynamics and drug therapy. Proc Natl Acad Sci USA 94: 6971–6976

    Article  Google Scholar 

  • Bremaud P (1999) Markov chains: Gibbs fields, Monte Carlo simulation and queues. Springer, New York

    MATH  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via EM algorithm. J R Stat Soc B 39: 1–38

    MATH  MathSciNet  Google Scholar 

  • Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1999) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373: 123–126

    Article  Google Scholar 

  • Lander ES, Bostein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199

    Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Li Q, Wu RL (2009) A multilocus odel for constructing a linkage disequilibrium map in human populations. Stat Appl Mol Genet Biol 8:Article 18

  • Ma CX, Casella G, Wu RL (2002) Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161: 1751–1762

    Google Scholar 

  • Nowak MA, May RM (2000) Virus dynamics. Oxford University, New York

    MATH  Google Scholar 

  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271: 1582–1586

    Article  Google Scholar 

  • Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD (1997) Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387: 188–191

    Article  Google Scholar 

  • Ribeiro RM, Bonhoeffer S (2000) Production of resistant HIV mutants during antiretroviral therapy. Proc Natl Acad Sci USA 97: 7681–7686

    Article  MATH  Google Scholar 

  • Sedaghat AR, Dinoso JB, Shen L, Wilke CO, Siliciano RF (2008) Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle. Proc Natl Acad Sci 105: 4832–4837

    Article  Google Scholar 

  • The International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–794

    Google Scholar 

  • Wang ZH, Wu RL (2004) A statistical model for high-resolution mapping of quantitative trait loci determining HIV dynamics. Stat Med 23: 3033–3051

    Article  Google Scholar 

  • Wang ZH, Hou W, Wu RL (2005) A statistical model to analyze quantitative trait locus interactions for HIV dynamics from the virus and human genomes. Stat Med 25: 495–511

    Article  MathSciNet  Google Scholar 

  • Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak MA, Hahn BH, Saag MS, Shaw GM (2004) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 23: 3033–3051

    Google Scholar 

  • Wodarz D, Nowak MA (2000) HIV therapy: managing resistance. Proc Natl Acad Sci USA 97: 8193–8195

    Article  Google Scholar 

  • Wu RL, Lin M (2006) Functional mapping—how to study the genetic architecture of dynamic complex traits. Nat Rev Genet 7: 229–237

    Article  Google Scholar 

  • Wu RL, Ma C-X, Casella G (2002) Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. Genetics 160: 779–792

    Google Scholar 

  • Wu RL, Ma CX, Lin M, Casella G (2004a) A general framework for analyzing the genetic architecture of developmental characteristics. Genetics 166: 1541–1551

    Article  Google Scholar 

  • Wu RL, Ma CX, Lin M, Wang ZH, Casella G (2004b) Functional mapping of growth quantitative trait loci using a transform-both-sides logistic model. Biometrics 60: 729–738

    Article  MATH  MathSciNet  Google Scholar 

  • Wu RL, Wang ZH, Zhao W, Cheverud JM (2004c) A mechanistic model for genetic machinery of ontogenetic growth. Genetics 168: 2383–2394

    Article  Google Scholar 

  • Wu S, Yang J, Wu RL (2006) Multilocus linkage disequilibrium mapping of quantitative trait loci that affect HIV dynamics: a simulation approach. Stat Med 25: 3826–3849

    Article  MathSciNet  Google Scholar 

  • Zhao W, Hou W, Littell RC, Wu RL (2005) Structured antedependence models for functional mapping of multivariate longitudinal quantitative traits. Stat Appl Mol Genet Biol 4:Article 33

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongling Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Hager, W.W. & Wu, R. A differential equation model for functional mapping of a virus-cell dynamic system. J. Math. Biol. 61, 1–15 (2010). https://doi.org/10.1007/s00285-009-0288-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0288-1

Keywords

Mathematics Subject Classification (2000)

Navigation