Skip to main content
Log in

Stochastic SIRS epidemic model with perturbation on immunity decay rate

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This study introduces a novel stochastic variant for the Susceptible-Infected-Recovered-Susceptible (SIRS) system, focusing on perturbations involving the immunity decay rate. We determine a critical threshold value of the reproduction number, denoted as \({\mathcal {R}}_0\), which plays a pivotal role in understanding the system dynamics. Through rigorous mathematical derivations, we have shown that a unique solution exists for the system under consideration. Additionally, we leverage the powerful analytical tool of a stochastic Lyapunov function to evaluate the extinction and persistence of the infection, providing valuable insights into the system behavior under different conditions. Our analysis reveals that if \( {\mathcal {R}}_0 < 1\), the disease will eventually vanish from the population, whereas if \( {\mathcal {R}}_0 > 1\), an outbreak will ensue. To reinforce our findings, we provide computer simulations as supplementary evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Diekmann, O., Heesterbeek, H., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics, vol. 7. Princeton University Press, Princeton (2013)

    Google Scholar 

  2. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, pp. 700–721 (1927)

  3. Bacaer, N.: McKendrick and Kermack on Epidemic Modeling, pp. 1926–1927. Springer, Cham (2011)

    Google Scholar 

  4. Nakata, Y.: Delay-equations for epidemic models, instability due to waning immunity

  5. Inaba, H.: Kermack and McKendrick revisited: the variable susceptibility model for infectious diseases. Jpn. J. Ind. Appl. Math. 18, 273–292 (2001)

    Article  MathSciNet  Google Scholar 

  6. Breda, D., Diekmann, O., De Graaf, W.F., Pugliese, A., Vermiglio, R.: On the formulation of epidemic models (an appraisal of Kermack and McKendrick). J. Biol. Dyn. 6(sup2), 103–117 (2012)

    Article  MathSciNet  Google Scholar 

  7. Anderson, R.M., May, R.M.: Population biology of infectious diseases: part I. Nature 280(5721), 361–367 (1979)

    Article  Google Scholar 

  8. Zhen, J., Ma, Z., Han, M.: Global stability of an SIRS epidemic model with delays. Acta Math. Sci. 26(2), 291–306 (2006)

    Article  MathSciNet  Google Scholar 

  9. Takeuchi, Y., Ma, W., Beretta, E.: Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear Anal. Theory Methods Appl. 42(6), 931–947 (2000)

    Article  MathSciNet  Google Scholar 

  10. Hethcote, H.W., Stech, H.W., Van Den Driessche, P.: Nonlinear oscillations in epidemic models. SIAM J. Appl. Math. 40(1), 1–9 (1981)

    Article  MathSciNet  Google Scholar 

  11. Kyrychko, Y.N., Blyuss, K.B.: Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Anal. Real World Appl. 6(3), 495–507 (2005)

    Article  MathSciNet  Google Scholar 

  12. Diekmann, O., Montijn, R.: Prelude to Hopf bifurcation in an epidemic model: analysis of a characteristic equation associated with a nonlinear Volterra integral equation. J. Math. Biol. 14, 117–127 (1982)

    Article  MathSciNet  Google Scholar 

  13. Turkyilmazoglu, M.: A highly accurate peak time formula of epidemic outbreak from the SIR model. Chin. J. Phys. 84, 39–50 (2023)

    Article  MathSciNet  Google Scholar 

  14. Prodanov, D.: Analytical parameter estimation of the SIR epidemic model, applications to the COVID-19 pandemic. Entropy 23(1), 59 (2020)

    Article  MathSciNet  Google Scholar 

  15. Turkyilmazoglu, M.: An extended epidemic model with vaccination: weak-immune SIRVI. Phys. A Stat. Mech. Appl. 598, 127429 (2022)

    Article  MathSciNet  Google Scholar 

  16. Turkyilmazoglu, M.: A restricted epidemic SIR model with elementary solutions. Phys. A Stat. Mech. Appl. 600, 127570 (2022)

    Article  MathSciNet  Google Scholar 

  17. El Idrissi, M., Harchaoui, B., Brahim, A.N., Bouzalmat, I., Settati, A., Lahrouz, A.: A sufficient condition for extinction and stability of a stochastic SIS model with random perturbation. WSEAS Trans. Syst 21, 367–371 (2022)

    Article  Google Scholar 

  18. Aznague, S., El Idrissi, M., Brahim, A.N., Harchaoui, B., Boutouil, S., Settati, A., El Merzguioui, M., El Amrani, J.: A probabilistic SIRI epidemic model incorporating incidence capping and logistic population expansion. Appl. Math. 17(5), 773–789 (2023)

    Google Scholar 

  19. Lahrouz, A., Settati, A., El Fatini, M., Pettersson, R., Taki, R.: Probability analysis of a perturbed epidemic system with relapse and cure. Int. J. Comput. Methods 17(03), 1850140 (2020)

    Article  MathSciNet  Google Scholar 

  20. Settati, A., Lahrouz, A., Assadouq, A., El Fatini, M., El Jarroudi, M., Wang, K.: The impact of nonlinear relapse and reinfection to derive a stochastic threshold for SIRI epidemic model. Chaos Solitons Fractals 137, 109897 (2020)

    Article  MathSciNet  Google Scholar 

  21. Settati, A., Lahrouz, A., El Jarroudi, M., El Jarroudi, M.: Dynamics of hybrid switching diffusions SIRS model. J. Appl. Math. Comput. 52, 101–123 (2016)

    Article  MathSciNet  Google Scholar 

  22. Beretta, E., Kolmanovskii, V., Shaikhet, L.: Stability of epidemic model with time delays influenced by stochastic perturbations. Math. Comput. Simul. 45(3–4), 269–277 (1998)

    Article  MathSciNet  Google Scholar 

  23. Meng, X., Zhao, S., Feng, T., Zhang, T.: Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lahrouz, A., Settati, A., Akharif, A.: Effects of stochastic perturbation on the SIS epidemic system. J. Math. Biol. 74, 469–498 (2017)

    Article  MathSciNet  Google Scholar 

  25. Settati, A., Lahrouz, A., Zahri, M., Tridane, A., El Fatini, M., El Mahjour, H., Seaid, M.: A stochastic threshold to predict extinction and persistence of an epidemic SIRS system with a general incidence rate. Chaos Solitons Fractals 144, 110690 (2021)

    Article  MathSciNet  Google Scholar 

  26. Rudnicki, R.: Long-time behaviour of a stochastic prey?predator model. Stoch. Process. Appl. 108(1), 93–107 (2003)

    Article  MathSciNet  Google Scholar 

  27. Lin, Y., Jiang, D., Wang, S.: Stationary distribution of a stochastic SIS epidemic model with vaccination. Phys. A Stat. Mech. Appl. 394, 187–197 (2014)

    Article  MathSciNet  Google Scholar 

  28. Liu, M., Wang, K., Wu, Q.: Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull. Math. Biol. 73, 1969–2012 (2011)

    Article  MathSciNet  Google Scholar 

  29. Xia, P., Zheng, X., Jiang, D.: Persistence and nonpersistence of a nonautonomous stochastic mutualism system. Abstr. Appl. Anal. 2013, 256249 (2013)

    Article  MathSciNet  Google Scholar 

  30. Liptser, R.S.: A strong law of large numbers for local martingales. Stochastics 3(1–4), 217–228 (1980)

    Article  MathSciNet  Google Scholar 

  31. Fischer, N., Kamalapurkar, R., Dixon, W.E.: LaSalle-Yoshizawa corollaries for nonsmooth systems. IEEE Trans. Autom. Control 58(9), 2333–2338 (2013)

    Article  MathSciNet  Google Scholar 

  32. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Bouzalmat.

Ethics declarations

Conflict of interest

The author in charge of correspondence declares that no conflict of interest are associated with this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Theorem 1

Appendix A: Proof of Theorem 1

The dynamics of the population size N(t) can be described by

$$\begin{aligned} d N(t) = [\mu _1 - \mu _1 N(t) - \mu _2 I_d(t)] d t. \end{aligned}$$
(49)

It follows from (49) and (5) that

$$\begin{aligned} d N(t) \ge \left[ \mu _1- (\mu _1+\mu _2) N(t)\right] d t, \quad \text{ for } \text{ all }\quad t \le \tau _{2}. \end{aligned}$$

Integrating and multiplying both sides by \(\exp {\left[ \left( \mu _1+\mu _2\right) t\right] }\), yields that

$$\begin{aligned} N(t)-\dfrac{\mu _1}{\mu _1+\mu _2} \ge \left( N(0)-\dfrac{\mu _1}{\mu _1+\mu _2}\right) \exp {\left[ -\left( \mu _1+\mu _2\right) t\right] }, \quad \text{ for } \text{ all }\quad t \le \tau _{2}. \end{aligned}$$

For \(\omega \in \left( \tau _{2}<\infty \right) \) and \(t=\tau _{2}\), \(N(\tau _{2})=\mu _1/\left( \mu _1+\mu _2\right) \), we have

$$\begin{aligned} 0 \ge \left( N(0) -\dfrac{\mu _1}{\mu _1+\mu _2}\right) \exp {\left[ \left( \mu _1+\mu _2\right) \tau _{2}\right] }>0. \end{aligned}$$

That is a contradiction. The solution \(Z(t)=(S(t), I_d(t), R_w(t))\) starting from \(Z(0) \in \Omega \) is proven to be global, positive, and verifies \(N(t)>\mu _1/\left( \mu _1+\mu _2\right) \). Using (49), one obtains \(d N(t) \le \left[ \mu _1-\mu _1 N(t)\right] d t\). Multiplying the two sides by \(\exp {(\mu _1 t)}\) and integrating yields \(N(t)-1 \le \left[ N(0)-1 \right] \exp {(-\mu _1 t)}\), which implies, that if \(Z(0) \in \Omega \), then \( N(t) \le 1\). Thus, the domain \(\Omega \) is positively invariant.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzalmat, I., El Idrissi, M., Settati, A. et al. Stochastic SIRS epidemic model with perturbation on immunity decay rate. J. Appl. Math. Comput. 69, 4499–4524 (2023). https://doi.org/10.1007/s12190-023-01937-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-023-01937-w

Keywords

Mathematics Subject Classification

Navigation