Skip to main content

Kinetic Models of Chemotaxis

  • Chapter
  • First Online:
Evolution Equations of Hyperbolic and Schrödinger Type

Part of the book series: Progress in Mathematics ((PM,volume 301))

  • 1169 Accesses

Abstract

We review some recent results on global existence and blow-up for kinetic models of chemotaxis and present new blow-up results.

Mathematics Subject Classification. Primary 35F10; Secondary 92C17, 82C40.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality.Ann. of Math. (2) 138 (1993), no. 1, 213–242.

    MathSciNet  MATH  Google Scholar 

  2. A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations 44, 32 pp. (electronic) (2006).

    Google Scholar 

  3. A. Blanchet, J.A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in R2. Comm. Pure Appl. Math. 61 (2008), no. 10, 1449–1481.

    Google Scholar 

  4. N. Bournaveas, V. Calvez, S. Gutierrez and B. Perthame, Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates, Comm. Partial Differential Equations 33, 79-95 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Bournaveas and V. Calvez, Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables, Kinetic and Related Models 1, 29-48 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Bournaveas and V. Calvez, Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 5, 1871-1895.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in R2, to appear in Comm. Math. Sci. (2008).

    Google Scholar 

  8. V. Calvez, L. Corrias and M.A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Communications on Partial Differential Equations, Volume 37, Issue 4, April 2012, 561-584.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Calvez and J.A. Carrillo, Refined Asymptotics for the subcritical Keller-Segel system and Related Functional Inequalities, arXiv:1007.2837

    Google Scholar 

  10. F. Castella and B. Perthame, Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris Sér. I Math. 322, 535-540 (1996).

    MathSciNet  MATH  Google Scholar 

  11. F.A.C.C. Chalub, Y. Dolak-Struss, P.A. Markowich, D. Oelz, C. Schmeiser and A. Soreff, Model hierarchies for cell aggregation by chemotaxis, Math. Models Methods Appl. Sci. 16, 1173-1197 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. F.A.C.C. Chalub, P.A. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math. 142, 123-141 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms, J. Math. Biol. 51, 595-615 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in R2. C. R. Math. Acad. Sci. Paris 339 (2004), no. 9, 611-616.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Filbet, Ph. Laurencot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol. 50, 189-207 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Hillen and A. Potapov, The one-dimensional chemotaxis model: global existence and asymptotic profile. Math. Methods Appl. Sci. 27 (2004), no. 15, 1783-1801.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Hillen and K.J. Painter, A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), no. 1-2, 183-217,

    Article  MathSciNet  MATH  Google Scholar 

  18. H.J. Hwang, K. Kang and A. Stevens, Global solutions of nonlinear transport equations for chemosensitive movement, SIAM J. Math. Anal. 36, 1177-1199 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329, 819-824 (1992).

    MathSciNet  MATH  Google Scholar 

  20. T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. 5, 581-601 (1995).

    MathSciNet  MATH  Google Scholar 

  21. K. Osaki and A. Yagi, Finite-dimensional attractor for one-dimensional Keller-Segel equations. Funkcial. Ekvac. 44 (2001), no. 3, 441-469.

    MathSciNet  MATH  Google Scholar 

  22. H.G. Othmer, S.R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol. 26, 263-298 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhäuser (2007).

    MATH  Google Scholar 

  24. M. Ruzhansky and J. Smith, Dispersive and Strichartz estimates for hyperbolic equations with constant coefficients. MSJ Memoirs, 22. Mathematical Society of Japan, Tokyo, 2010. x+147 pp. ISBN: 978-4-931469-57-0.

    Google Scholar 

  25. J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses. PLoS Comput. Biol. 6 (2010), no. 8, e1000890.

    Google Scholar 

  26. J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave, PNAS, 2011, 108 (39) 16235-16240.

    Article  Google Scholar 

  27. T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, AMS, 2006.

    Google Scholar 

  28. N. Vauchelet, Numerical simulation of a kinetic model for chemotaxis, Kinetic and Related Models, 3 (2010), pp. 501-528.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Bournaveas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Bournaveas, N., Calvez, V. (2012). Kinetic Models of Chemotaxis. In: Ruzhansky, M., Sugimoto, M., Wirth, J. (eds) Evolution Equations of Hyperbolic and Schrödinger Type. Progress in Mathematics, vol 301. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0454-7_2

Download citation

Publish with us

Policies and ethics