Skip to main content
Log in

Patch-size and isolation effects in the Fisher–Kolmogorov equation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We examine the classical problem of the existence of a threshold size for a patch to allow for survival of a given population in the case where the patch is not completely isolated. The surrounding habitat matrix is characterized by a non-zero carrying capacity. We show that a critical patch size cannot be strictly defined in this case. We also obtain the saturation density in such a patch as a function of the size of the patch and the relative carrying capacity of the outer region. We argue that this relative carrying capacity is a measure of the isolation of the patch. Our results are then compared with conclusions drawn from observations of the population dynamics of understorey birds in fragments of the Amazonian forest and shown to qualitatively agree with them, offering an explanation for the importance of dispersal and isolation in these observations. Finally, we show that a generalized critical patch size can be introduced resorting to threshold densities for the observation of a given species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andow D., Kareiva P., Levin S., Okubo A.: Spread of invading organisms. Landsc. Ecol. 4, 177–188 (1990)

    Article  Google Scholar 

  2. Bainbridge R.: The size, shape and density of marine phytoplankton concentrations. Biol. Rev. Camb. Phil. Soc. 32, 91–115 (1957)

    Article  Google Scholar 

  3. Ballard M., Kenkre V.M., Kupperman M.N.: Periodically varying externally imposed environmental effects in population biology. Phys. Rev. E 70, 031912 (2004)

    Article  Google Scholar 

  4. Berestycki H., Hamel F.: Fronts and invasions in general domains. C. R. Acad. Sci. Paris, Ser. I 343, 711–716 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Cantrell R.S., Cosner C.: On the effects of spatial heterogeneity on the persistence of interacting species. J. Math. Biol. 37, 103–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cantrell R.S., Cosner C.: The effects of spatial heterogeneity on population dynamics. J. Math. Biol. 29, 315–338 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cantrell R.S., Cosner C.: Insular biogeographic theory and diffusion models in population dynamics. Theor. Pop. Biol. 45, 177–202 (1994)

    Article  MATH  Google Scholar 

  8. Cantrell R.S., Cosner C., Fagan W.F.: Competitive reversals inside ecological reserves: the role of external habitat degradation. J. Math. Biol. 37, 491–533 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fahrig L.: Effects of habitat fragmentation on biodiversity. Ann. Rev. Ecol. Syst. 34, 487–515 (2003)

    Article  Google Scholar 

  10. Ferraz G. et al.: A large scale deforestation experiment: effects of patch area and isolation on amazon birds. Science 315, 238–241 (2007)

    Article  Google Scholar 

  11. Fife P.C.: Mathematical Aspects of reacting and Diffusing Systems. Lecture Notes in Biomath., vol. 28. Springer, Berlin (1979)

    Google Scholar 

  12. Kenkre V.M., Kuperman M.N.: Applicability of Fisher equation to bacterial population dynamics. Phys. Rev. E 67, 051921 (2003)

    Article  Google Scholar 

  13. Kierstaed H., Slobodkin I.B.: The size of water masses containing plankton bloom. J. Marine Research 12, 141–147 (1953)

    Google Scholar 

  14. Latore J., Gould P., Mortimer M.A.: Spatial Dynamics and Critical Patch Size of Annual Plant Populations. J. Theo. Biol. 180, 277–285 (1998)

    Article  Google Scholar 

  15. Lin A.L. et al.: Localization and extinction of bacterial populations under inhomogeneous growth conditions. Bioph. J. 87, 75–80 (2004)

    Article  Google Scholar 

  16. Ludwig D., Aronson D.G., Weinberger H.F.: Spatial patterning of the spruce bud-worm. J. Math. Biol. 8, 217–258 (1979)

    MATH  MathSciNet  Google Scholar 

  17. MacArthur R.H., Wilson E.O.: Theory of Island Biogeography. Princeton University Press, Princeton (1967)

    Google Scholar 

  18. Martin A.P.: On filament width in oceanic plankton distributions. J. Plankton Res. 22, 597–602 (2000)

    Article  Google Scholar 

  19. Neicu T., Pradhan A., Larochelle D.A., Kudrolli A.: Extinction transition in bacterial colonies under forced convection. Phys. Rev. E 62, 1059–1062 (2000)

    Article  Google Scholar 

  20. Okubo, A., Levin, S.A. (eds.) Diffusion and Ecological Problems, Chap. 9. Springer, Berlin (2001)

  21. Pacala S.W., Roughgarden J.: Spatial heterogeneity and interspecific competition. Theor. Pop. Biol. 21, 91–113 (1982)

    Article  MathSciNet  Google Scholar 

  22. Perry N.: Experimental validation of a critical domain size in reaction-diffusion systems with Escherichia coli populations. J. R. Soc. Interface 2, 379–387 (2005)

    Article  Google Scholar 

  23. Sanchez B.C., Parmenter R.R.: Patterns of shrub-dwelling arthropod diversity across a desert shrubland-grassland ecotone: a test of island biogeographic theory. J. Arid. Environ. 50, 247–265 (2002)

    Article  Google Scholar 

  24. Skellam J.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    MATH  MathSciNet  Google Scholar 

  25. Shigesada N., Kawasaki K.: Biological Invasions: Theory and Practice. Oxford University Press, Oxford (1997)

    Google Scholar 

  26. Stouffer P.C., Bierregaard R.O. Jr, Strong R., Lovejoy T.E.: Long-term landscape change and bird abundance in Amazonian rainforest fragments. Conserv. Biol. 20, 1212–1223 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Artiles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artiles, W., Carvalho, P.G.S. & Kraenkel, R.A. Patch-size and isolation effects in the Fisher–Kolmogorov equation. J. Math. Biol. 57, 521–535 (2008). https://doi.org/10.1007/s00285-008-0174-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0174-2

Keywords

Mathematics Subject Classification (2000)

Navigation