Skip to main content
Log in

Steric hindrance effects on surface reactions: applications to BIAcore

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Because surface-volume reactions occur in many biological and industrial processes, understanding the rate of such reactions is important. The BIAcore surface plasmon resonance (SPR) biosensor for measuring rate constants has such a geometry. Though several models of the BIAcore have been presented, few take into account that large ligand molecules can block multiple receptor sites, thus skewing the sensogram data. In this paper some general mathematical principles are stated for handling this phenomenon, and a surface-reaction model is presented explicitly. An integro-partial differential equation results, which can be simplified greatly using perturbation techniques, yielding linear and nonlinear integrodifferential equations. Explicit and asymptotic solutions are constructed for cases motivated by experimental design. The general analysis can provide insight into surface-volume reactions occurring in various contexts. In particular, the steric hindrance effect can be quantified with a single dimensionless parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basmadjian D. (1990). The effect of flow and mass transport in thrombogenesis. Ann. Biomed. Eng. 18: 685–709

    Article  Google Scholar 

  2. BIAcore, Inc. BIAcoreSystem Manual Version 1.1. BIAcore, Inc., Uppsala, undated

  3. Curto L.M., Caramelo J.J. and Delfino J.M. (2005). Δ98Δ, a functional all-β-sheet abridged form of intestinal fatty acid binding protein. Biochemistry 44: 13847–13857

    Article  Google Scholar 

  4. Dionne K.E., Cain B.M., Li R.H., Bell W.J., Doherty E.J., Rein D.H., Lysaght M.J. and Gentile F.T. (1996). Transport characterization of membranes for immunoisolation. Biomaterials 17: 257–266

    Article  Google Scholar 

  5. Edwards D.A. (1999). Estimating rate constants in a convection-diffusion system with a boundary reaction. IMA J. Appl. Math. 63: 89–112

    Article  MATH  MathSciNet  Google Scholar 

  6. Edwards D.A. (2001). The effect of a receptor layer on the measurement of rate constants. Bull. Math. Biol. 63: 301–327

    Article  Google Scholar 

  7. Edwards D.A. (2006). Convection effects in the BIAcore dextran layer: surface reaction model. Bull. Math. Biol. 68: 627–654

    Article  MathSciNet  Google Scholar 

  8. Edwards D.A., Goldstein B. and Cohen D.S. (1999). Transport effects on surface-volume biological reactions. J. Math. Biol. 39: 533–561

    MATH  Google Scholar 

  9. Edwards D.A. and Jackson S.A. (2002). Testing the validity of the effective rate constant approximation for surface reaction with transport. Appl. Math. Lett. 15: 547–552

    Article  MATH  MathSciNet  Google Scholar 

  10. Edwards D.A. and Swaminathan S. (2005). The effect of receptor site nonuniformity on the measurement of rate constants. Appl. Math. Lett. 18: 1101–1107

    Article  MATH  Google Scholar 

  11. Garland P.B. (1996). Optical evanescent wave methods for the study of biomolecular reactions. Q. Rev. Biophys. 29: 91–117

    Article  Google Scholar 

  12. Gherardi E., Youles M.E., Miguel R.N., Blundell T.L., Iamele L., Gough J., Bandyopadhyay A., Hartmann G. and Butler P.J.G. (2003). Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor scatter factor. PNAS 100: 12039–12044

    Article  Google Scholar 

  13. Grabowski E.F., Friedman L.I. and Leonard E.F. (1972). Effects of shear rate on the diffusion and adhesion of blood platelets to a foreign surface. Ind. Eng. Chem. Fund. 11: 224–232

    Article  Google Scholar 

  14. He X.Y., Li N. and Goldstein B. (2000). Lattice boltzmann simulation of diffusion-convection systems with surface chemical reaction. Mol. Sim. 25: 145–156

    Article  MATH  Google Scholar 

  15. Hoffman T.L., Canziani G., Jia L., Rucker J. and Doms R.W. (2000). A biosensor assay for studying ligand-membrane receptor interactions: binding of antibodies and HIV-1 env to chemokine receptors. Proc. NAS 97: 11215–11220

    Article  Google Scholar 

  16. Joss L., Morton T.A., Doyle M.L. and Myszka D.G. (1998). Interpreting kinetic rate constants from optical biosensor data recorded on a decaying surface. Anal. Biochem. 261: 203–210

    Article  Google Scholar 

  17. Karlsson R. and Fält A. (1997). Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol. Methods 200: 121–133

    Article  Google Scholar 

  18. Karlsson R., Michaelson A. and Mattson L. (1991). Kinetic analysis of monoclonal antibody–antigen interactions with a new biosensor based analytical system. J. Immunol. Methods 145: 229–240

    Article  Google Scholar 

  19. Kleene S.J. (1999). Both external and internal calcium reduce the sensitivity of the olfactory cyclic-nucleotide-gated channel to cAMP. J. Neurophys. 81: 2675–2682

    Google Scholar 

  20. Lee M., Rhodes A.L., Wyatt M.D., Forrow S. and Hartley J.A. (1993). GC-base sequence recognition by oligo (imidazolecarboxamide) and C-terminus-modified analogs of distamycin deduced from circular dichroism, proton nuclear magnetic resonance, and methidiumpropylethylenediaminetetraacetate-iron(II) footprinting studies. Biochemistry 32: 4237–4245

    Article  Google Scholar 

  21. Liedberg B., Lundstrom I. and Stenberg E. (1993). Principles of biosensing with an extended coupling matrix and surface-plasmon resonance. Sens. Actuators B 11: 63–72

    Article  Google Scholar 

  22. Long W.M. and Kalachev L.V. (2000). Asymptotic analysis of dissolution of a spherical bubble (case of fast reaction outside the bubble). Rocky Mt. J. Math. 30: 293–313

    MATH  MathSciNet  Google Scholar 

  23. Marshall C.B., Chakrabartty A. and Davies P.L. (2005). Hyperactive antifreeze protein from winter flounder is a very long rod-like dimer of α-helices. J. Biol. Chem. 280: 17920–17929

    Article  Google Scholar 

  24. O’Shannessy D.J., Brigham-Burke M. and Peck K. (1992). Immobilization chemistries suitable for use in the BIAcore surface plasmon resonance detector. Anal. Biochem. 205: 132–136

    Article  Google Scholar 

  25. Raghavan M., Chen M.Y., Gastinel L.N. and Bjorkman P.J. (1994). Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand. Immunity 1: 303–315

    Article  Google Scholar 

  26. Staszak K. and Prochaska K. (2005). Estimation of diffusion coefficients based on adsorption measurements in model extraction systems. Chem. Eng. Tech. 28: 985–990

    Article  Google Scholar 

  27. Sutovsky H. and Gazit E. (2004). The von Hippel-Lindau tumor suppressor protein is a molten globule under native conditions: implications for its physiological activities. J. Biol. Chem. 279: 17190–17196

    Article  Google Scholar 

  28. Szabo A., Stolz L. and Granzow R. (1995). Surface plasmon resonance and its use in bio-molecular interaction analysis (BIA). Curr. Opin. Struct. Biol. 5: 699–705

    Article  Google Scholar 

  29. Ward A.F.H. and Tordai L. (1946). Time-dependence of boundary tensions of solutions i. the role of diffusion in time-effects. J. Chem. Phys. 14: 453–461

    Article  Google Scholar 

  30. Yarmush M.L., Patankar D.B. and Yarmush D.M. (1996). An analysis of transport resistance in the operation of BIAcoreTM; implications for kinetic studies of biospecific interactions. Mol. Immunol. 33: 1203–1214

    Article  Google Scholar 

  31. Zheng Y. and Rundell A. (2003). Biosensor immunosurface engineering inspired by B-cell membrane-bound antibodies: modeling and analysis of multivalent antigen capture by immobilized antibodies. IEEE Trans. Nanobiosci. 2: 14–25

    Article  Google Scholar 

  32. Zhou J. and Low P.S. (2001). Characterization of the reversible conformational equilibrium in the cytoplasmic domain of human erythrocyte membrane band 3. J. Biol. Chem. 276: 38147–38151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Edwards.

Additional information

This work was supported in part by NIGMS Grant 1R01GM067244-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, D.A. Steric hindrance effects on surface reactions: applications to BIAcore. J. Math. Biol. 55, 517–539 (2007). https://doi.org/10.1007/s00285-007-0093-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0093-7

Keywords

Mathematics Subject Classification (2000)

Navigation