Skip to main content

Advertisement

Log in

Characterization of Beta-Lactam Resistance Genes and Virulence Factors Associated with Multidrug-Resistant Klebsiella pneumoniae Isolated from Patients at Major Hospitals in Trinidad, West Indies

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Accurate species identification and antibiotic resistance profiling are essential for the effective management of infections caused by bacterial pathogens. In this study, 373 clinical isolates of K. pneumoniae from major hospitals in Trinidad, West Indies, were characterized for resistance against beta-lactam antibiotics and the presence of genes encoding important virulence factors. Most of the isolates showed extended spectrum β-lactamase (ESBL) activity but few also displayed carbapenemase or ‘ESBL + carbapenemase’ activities. Polymerase chain reaction analysis revealed the presence of genes for ESBL subtypes blaTEM, blaSHV, and blaCTX-M that were dominant in isolates with the ESBL phenotype as well as those that did not show ESBL or carbapenemase activities. The carbapenem resistance gene, blaKPC, and the metallo-β-lactamase (MBL) gene, blaNDM-1, were also detected in some of the isolates. Multiple virulence genes were also detected, but the fimH-uge was the most common combination found among the local isolates. The findings of this study represent the first comprehensive study on the prevalence of ESBL, KPC and MBL genes and virulence profiling in antibiotic-resistant K. pneumoniae in Trinidad. Furthermore, the occurrence of multiple resistant phenotypes and gene combinations were revealed, though at low prevalence rates. This work emphasizes the need to implement molecular-based techniques in diagnostic workflows for rapid and accurate species identification and profiling of resistance and virulence genes in K. pneumoniae in Trinidad and Tobago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The dataset used and analyzed in this study is available via supplementary material and or linked within the manuscript.

Code Availability

Not applicable.

Abbreviations

K. pneumoniae :

Klebsiella pnuemoniae

MDR:

Multiple drug resistant

References

  1. Podschun R, Ullmann U (1998) Klebsiella Spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. https://doi.org/10.1128/CMR.11.4.589

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rawat D, Nair D (2010) Extended-spectrum β-lactamases in gram negative bacteria. J Glob Infect Dis 2(3):263–274. https://doi.org/10.4103/0974-777X.68531

    Article  PubMed  PubMed Central  Google Scholar 

  3. Falagas ME, Karageorgopoulos DE (2009) Extended-spectrum β-lactamase-producing organisms. J Hosp Infect 73(4):345–354. https://doi.org/10.1016/j.jhin.2009.02.021

    Article  CAS  PubMed  Google Scholar 

  4. Cantón R, González-Alba JM, Galán JC (2012) CTX-M enzymes: origin and diffusion. Front Microbiol. https://doi.org/10.3389/fmicb.2012.00110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Queenan AM, Bush K (2007) Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 20(3):440–458. https://doi.org/10.1128/CMR.00001-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase producing Enterobacteriaceae. Emerg Infect Dis 17(10):1791–1798. https://doi.org/10.3201/eid1710.110655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nordmann P, Poirel L, Toleman MA, Walsh TR (2011) Does broad-spectrum β-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by gram-negative bacteria? J Antimicrob Chemother 66(4):689–692. https://doi.org/10.1093/jac/dkq520

    Article  CAS  PubMed  Google Scholar 

  8. Paczosa MK, Mecsas J (2016) Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.00078-15

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wiskur BJ, Hunt JJ, Callegan MC (2008) Hypermucoviscosity as a virulence factor in experimental Klebsiella pneumoniae endophthalmitis. Invest Ophthalmol Vis Sci 49(11):4931–4938. https://doi.org/10.1167/iovs.08-2276

    Article  PubMed  Google Scholar 

  10. Fontana L, Bonura E, Lyski Z, Messer W (2019) The brief case: Klebsiella variicola-identifying the misidentified. J Clin Microbiol 57(1):e00826-18. https://doi.org/10.1128/JCM.00826-18

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tenover FC, Mizuki TS, Carlson LG (1990) Evaluation of AutoSCAN-W/A automated microbiology system for the identification of non-glucose-fermenting gram-negative bacilli. J Clin Microbiol 28(7):1628–1634

    Article  CAS  Google Scholar 

  12. Podschun R, Pietsch S, Holler C, Ullmann U (2001) Incidence of Klebsiella species in surface waters and their expression of virulence factors. Appl Environ Microbiol 67(7):3325–3327. https://doi.org/10.1128/AEM.67.7.3325-3327.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christian NA, Roye-Green K, Smikle M (2010) Molecular epidemiology of multidrug resistant extended spectrum beta-lactamase producing Klebsiella pneumoniae at a Jamaican Hospital, 2000–2004. BMC Microbiol 10:2–9. https://doi.org/10.1186/1471-2180-10-27

    Article  CAS  Google Scholar 

  14. Nicholson AM, Gayle P, Roye-Green K (2004) Extended spectrum beta-lactamase producing organisms at the University Hospital of the West Indies. West Indian Med J 53(2):104–108

    CAS  PubMed  Google Scholar 

  15. Forde C, Stierman B, Ramon-Pardo P, Dos Santos T, Singh N (2017) Carbapenem-resistant Klebsiella pneumoniae in Barbados: driving change in practice at the national level. PLoS ONE. https://doi.org/10.1371/journal.pone.0176779

    Article  PubMed  PubMed Central  Google Scholar 

  16. Melot B, Brisse S, Breurec S, Passet V, Malpote E, Lamaury I, Thiery G, Hoen B (2016) Community-acquired meningitis caused by a CG86 hypervirulent Klebsiella pneumoniae strain: first case report in the Caribbean. BMC Infect Dis. https://doi.org/10.1186/s12879-016-2065-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Doud MS, Grimes-Zeppegno R, Molina E, Miller N, Balachandar D, Schneper L, Poppiti R, Mathee K (2009) A K2A-positive Klebsiella pneumoniae causes liver and brain abscess in a Saint Kitt’s man. Int J Med Sci 6(6):301–304. https://doi.org/10.7150/ijms.6.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagassar RP, Daniel K, Bridgelal-Nagassar RJ, Ashraph K (2021) Surveillance of phenotypic extended spectrum beta-lactamase resistance in blood isolates at a Hospital in East Trinidad. Caribb Med J. https://doi.org/10.48107/cmj2021.04.008

    Article  Google Scholar 

  19. Cheddie P, Francis D, Akpaka PE (2017) Detection of a CTX-M group 2 beta-lactamase gene in a Klebsiella pneumoniae Isolate from a tertiary care hospital, Trinidad and Tobago. Ann Clin Microbiol Antimicrob 16(1):1–7. https://doi.org/10.1186/s12941-017-0209-x

    Article  CAS  Google Scholar 

  20. Akpaka PE, Legall B, Padman J (2010) Molecular detection and epidemiology of extended-spectrum beta-lactamase genes prevalent in clinical isolates of Klebsiella pneumoniae and E coli from Trinidad and Tobago. West Indian Med J 59(6):591–596

    CAS  PubMed  Google Scholar 

  21. Akpaka EP, Swanston HW (2008) Phenotypic detection and occurrence of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli at a tertiary hospital in Trinidad & Tobago. Braz J Infect Dis 12(6):516–520. https://doi.org/10.1590/S1413-86702008000600014

    Article  CAS  PubMed  Google Scholar 

  22. Bikandi J, Millán RS, Rementeria A, Garaizar J (2004) In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics 20(5):798–799. https://doi.org/10.1093/bioinformatics/btg491

    Article  CAS  PubMed  Google Scholar 

  23. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34(12):3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  24. Letunic I, Bork P (2016) Interactive tree of life (ITOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242–W245. https://doi.org/10.1093/nar/gkw290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stöver BC, Müller KF (2010) Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform. https://doi.org/10.1186/1471-2105-11-7

    Article  Google Scholar 

  26. CLSI (2016) Performance standards for antimicrobial susceptibility testing. CLSI supplement M100S. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  27. Behzadi P, Behzadi E, Yazdanbod H, Aghapour R, Cheshmeh MA, Omran DS (2018) A survey on urinary tract infection associated with two most common uropathogenic bacteria. Afr J Clin Exp Microbiol 19(3):111–115. https://doi.org/10.4314/ajcem.v19i3.3

    Article  Google Scholar 

  28. Osman EA, El-Amin N, Adrees EAE, Al-Hassan L, Mukhtar M (2020) Comparing conventional, biochemical and genotypic methods for accurate identification of Klebsiella pneumoniae in Sudan. Access Microbiol 2(3):2–5. https://doi.org/10.1099/acmi.0.000096

    Article  CAS  Google Scholar 

  29. He Y, Guo X, Xiang S, Li J, Li X, Xiang H, He J, Chen D, Chen J (2016) Comparative analyses of phenotypic methods and 16S RRNA, Khe, RpoB genes sequencing for identification of clinical isolates of Klebsiella pneumoniae. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-016-0702-9

    Article  PubMed  Google Scholar 

  30. Pereira P, Lexley M, Phillips M, Ramlal H, Teemul K, Prabhakar P (2004) Third generation cephalosporin use in a tertiary hospital in port of Spain, Trinidad: need for an antibiotic policy. BMC Infect Dis 4:1–7. https://doi.org/10.1186/1471-2334-4-59

    Article  Google Scholar 

  31. Martínez D, Caña L, Rodulfo H, García J, González D, Rodríguez L, De Donato M (2020) Characteristics of dual carbapenemase-producing Klebsiella pneumoniae strains from an outbreak in Venezuela: a retrospective study. Rev Panam Salud Publica 44(1):1–7. https://doi.org/10.26633/RPSP.2020.50

    Article  Google Scholar 

  32. Heinz E, Brindle R, Morgan-McCalla A, Peters K, Thomson NR (2019) Caribbean multi-centre study of Klebsiella pneumoniae: whole-genome sequencing, antimicrobial resistance and virulence factors. Microbial Genomics 5(5):1–12. https://doi.org/10.1099/mgen.0.000266

    Article  CAS  Google Scholar 

  33. Bonnet R (2004) Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48(1):1–14. https://doi.org/10.1128/AAC.48.1.1-14.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Swathi CH, Chikala R, Ratnakar KS, Shritaran V (2016) A structural, epidemiological & genetic overview of Klebsiella pneumoniae Carbapenemases (KPCs). Indian J Med Res 144(1):21–31. https://doi.org/10.4103/0971-5916.193279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guzmán-Blanco M, Labarca JA, Villegas MV, Gotuzzo E (2014) Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis 18(4):421–433. https://doi.org/10.1016/j.bjid.2013.10.005

    Article  PubMed  Google Scholar 

  36. Hirsch EB, Tam VH (2010) Detection and treatment options for Klebsiella pneumoniae Carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother 65(6):1119–1125. https://doi.org/10.1093/jac/dkq108

    Article  CAS  PubMed  Google Scholar 

  37. Shields RK, Clancy CJ, Press EG, Nguyen MH (2016) Aminoglycosides for treatment of bacteremia due to Carbapenem-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 60(5):3187–3192. https://doi.org/10.1128/AAC.02638-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Queenan AM, Foleno B, Gownley C, Wira E, Bush K (2004) Effects of inoculum and β-lactamase activity in AmpC- and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. J Clin Microbiol 42(1):269–275. https://doi.org/10.1128/JCM.42.1.269-275.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doumith M, Ellington MJ, Livermore DM, Woodford N (2009) Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter Spp. clinical isolates from the UK. J Antimicrob Chemother 63(4):659–667. https://doi.org/10.1093/jac/dkp029

    Article  CAS  PubMed  Google Scholar 

  40. Thomson KS (2010) Extended-spectrum-β-lactamase, AmpC, and Carbapenemase issues. J Clin Microbiol 48(4):1019–1025. https://doi.org/10.1128/JCM.00219-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khalifa SM, Abd El-Aziz AM, Hassan R, Abdelmegeed ES (2021) β-lactam resistance associated with β-lactamase production and porin alteration in clinical isolates of E. coli and K. pneumoniae. PLoS ONE 16(5 May):1–22. https://doi.org/10.1371/journal.pone.0251594

    Article  CAS  Google Scholar 

  42. Wang P, Chen S, Guo Y, Xiong Z, Hu F, Zhu D, Zhang Y (2011) Occurrence of false positive results for the detection of Carbapenemases in Carbapenemase-negative Escherichia coli and Klebsiella pneumoniae isolates. PLoS ONE 6(10):6–10. https://doi.org/10.1371/journal.pone.0026356

    Article  CAS  Google Scholar 

  43. Silago V, Kovacs D, Samson H, Matthews JSL, Oravcová K, Lupindu AM, Hoza AS, Mshana SE (2021) Existence of multiple Esbl genes among phenotypically confirmed Esbl producing Klebsiella pneumoniae and Escherichia coli concurrently isolated from clinical, colonization and contamination samples from neonatal units at Bugando Medical Center, Mwanza, Tanzania. Antibiotics 10(5):1–10. https://doi.org/10.3390/antibiotics10050476

    Article  CAS  Google Scholar 

  44. Bell JM, Chitsaz M, Turnidge JD, Barton M, Walters LJ, Jones RN (2007) Prevalence and significance of a negative extended-spectrum β-lactamase (ESBL) confirmation test result after a positive ESBL screening test result for isolates of Escherichia Coli and Klebsiella pneumoniae: results from the SENTRY Asia-Pacific surveillance program. J Clin Microbiol 45(5):1478–1482. https://doi.org/10.1128/JCM.02470-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Remya P, Shanthi M, Sekar U (2018) Occurrence and characterization of hyperviscous K1 and K2 serotype in Klebsiella pneumoniae. J Lab Phys 10(03):283–288. https://doi.org/10.4103/jlp.jlp_48_18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Patrick Akpaka (North Central Regional Health Authority, Trinidad and Tobago), Dr. Rajeev Nagessar (Eastern Regional Health Authority, Trinidad and Tobago), Dr. Madhura Manjunath (North West Regional Health Authority, Trinidad and Tobago), Dr. Alisa Nobee (South West Regional Health Authority), and the laboratory technical staff for conveniently compiling isolates that were used in this study. We also thank Mr. Stephen D. B. Jr Ramnarine (University of the West Indies, St. Augustine, Trinidad and Tobago) for his extensive review of the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. In-house primer design, material preparation, and collection of the isolates from the Microbiology laboratory at the Regional Health Authorities were done by AP. Analysis was performed by AP and AR. The first draft of the manuscript was written by AP, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adesh Ramsubhag.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Approval was obtained from the ethics committee of the University of the West Indies, St. Augustine, Trinidad, and Tobago and the major Regional Health Authorities in Trinidad and Tobago.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pustam, A., Jayaraman, J. & Ramsubhag, A. Characterization of Beta-Lactam Resistance Genes and Virulence Factors Associated with Multidrug-Resistant Klebsiella pneumoniae Isolated from Patients at Major Hospitals in Trinidad, West Indies. Curr Microbiol 79, 278 (2022). https://doi.org/10.1007/s00284-022-02972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02972-9

Navigation