Skip to main content
Log in

Genomic Analysis and Molecular Characteristics in Carbapenem-Resistant Klebsiella pneumoniae Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae is an important bacterium and responsible for both infections acquired in hospital and community because of its multidrug resistance and the virulence. The aim of this research was to investigate clonal lineages, antibiotic resistance profiles, and virulence factors of the hospital isolated carbapenem-resistant strains. Fifty carbapenem-resistant isolates were phenotypically confirmed extended-spectrum beta-lactamases ESBLs producers. MLST analysis revealed 94% sequence type 11. These isolates mainly belonged to three clones according to the PFGE DNA patterns. PFGE patterns have good discrimination than ST profiles. One isolate, K. pneumoniae KPX, undergoing whole-genome sequencing comprised one circular chromosome and four circular plasmids. This isolate harbored a variety of antimicrobial resistance and virulence determinants. The closest relative of K. pneumoniae KPX was another ST11 clinical isolate recovered Sichuan. In addition, KPC-2 (98.0%), SHV-11 (98.0%), TEM-1 (76.0%), CTX-M (76.0%), oqxB1(66%), qnrS (70%), Int1 (42.0%), sul1 (82.0%), sul2 (96.0%), iutA (88%), iucC(10%), and rmpA2 (100%) genes were presented in multiple drug-resistant isolates. The dataset presented in this study provided the genomic and epidemiological analysis of carbapenem-resistant K. pneumoniae in hospital settings. Antimicrobial-resistant profiles suggested the presence of significant selective antibiotic pressure. Appropriate surveillance is essential to the development of effective control strategies in the prevention of nosocomial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data are true and reliable and can provide the original data at any time.

References

  1. Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4):589–603. https://doi.org/10.1128/CMR.11.4.589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu F, Zhu D, Wang F (2018) Wang M Current Status and Trends of Antibacterial Resistance in China. Clin Infect Dis 67(suppl 2):S128–S134. https://doi.org/10.1093/cid/ciy657

    Article  PubMed  Google Scholar 

  3. Khan AU, Maryam L, Zarrilli R (2017) Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol 17(1):101. https://doi.org/10.1186/s12866-017-1012-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK, Palmore TN, Segre JA, Group NCSP (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 4:148. https://doi.org/10.1126/scitranslmed.3004129

    Article  Google Scholar 

  5. Arnold RS, Thom KA, Sharma S, Phillips M, Kristie Johnson J, Morgan DJ (2011) Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South Med J 104(1):40–45. https://doi.org/10.1097/SMJ.0b013e3181fd7d5a

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paterson DL (2006) Resistance in gram-negative bacteria: enterobacteriaceae. Am J Med 119(Suppl 1):S20–S28

    Article  CAS  PubMed  Google Scholar 

  7. Karaiskos I, Giamarellou H (2014) Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 15(10):1351–1370. https://doi.org/10.1517/14656566.2014.914172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  9. Qi Y, Wei Z, Ji S, Du X, Shen P, Yu Y (2011) ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother 66(2):307–312. https://doi.org/10.1093/jac/dkq431

    Article  CAS  PubMed  Google Scholar 

  10. Ruan Z, Feng Ye (2016) BacWGSTdb, a database for genotyping and source tracking bacterial pathogens. Nucleic Acids Res 44(D1):D682–D687. https://doi.org/10.1093/nar/gkv1004

    Article  CAS  PubMed  Google Scholar 

  11. Kaufmann ME, Pitt TL (1994) Pulsed-field gel electrophoresis of bacterial DNA. Methods in practical laboratory bacteriology. CRC Press, Boca Raton, pp 83–92

    Google Scholar 

  12. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239. https://doi.org/10.1128/jcm.33.9.2233-2239.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy AM (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30(7):693–700. https://doi.org/10.1038/nbt.2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10(6):563–569. https://doi.org/10.1038/nmeth.2474

    Article  CAS  PubMed  Google Scholar 

  15. Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A (2009) INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 25(8):1096–1098. https://doi.org/10.1093/bioinformatics/btp105

    Article  CAS  PubMed  Google Scholar 

  16. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. https://doi.org/10.1186/1471-2164-12-402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kitchel B, Rasheed JK, Patel JB et al (2009) Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 53:3365–3370. https://doi.org/10.1128/AAC.00126-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bush K (2011) Fisher JF Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol 65:455–478. https://doi.org/10.1146/annurev-micro-090110-102911

    Article  CAS  PubMed  Google Scholar 

  19. Fisher JF, Meroueh SO (2005) Mobashery S Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 105(2):395–424. https://doi.org/10.1021/cr030102i

    Article  CAS  PubMed  Google Scholar 

  20. Rodríguez-Martínez JM, Díaz de Alba P, Briales A, Machuca J, Lossa M et al (2013) Contribution of OqxAB efflux pumps to quinoloneresistance in extended-spectrum-b-lactamase-producingKlebsi-ella pneumoniae. J Antimicrob Chemother 68:68–73. https://doi.org/10.1093/jac/dks377

    Article  CAS  PubMed  Google Scholar 

  21. Yuan J, Xu X, Guo Q, Zhao X, Ye X et al (2012) Prevalence of theoqxABgene complex inKlebsiella pneumoniaeandEscherichia coliclinicalisolates. J Antimicrob Chemother 67:1655–1659. https://doi.org/10.1093/jac/dks086

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Bi W, Dong G, Zhang Y, Wu Q, Dong T, Cao J, Zhou T (2020) The new perspective of old antibiotic: In vitro antibacterial activity of TMP-SMZ against Klebsiella pneumoniae. J Microbiol Immunol Infect 53(5):757–765. https://doi.org/10.1016/j.jmii.2018.12.013

    Article  CAS  PubMed  Google Scholar 

  23. Hall RM, Collis CM (1998) Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist Update 1:109–119. https://doi.org/10.1016/s1368-7646(98)80026-5

    Article  CAS  Google Scholar 

  24. Smajs D, Smarda J, Weinstock GM (2003) The Escherichia fergusonii iucABCD iutA genes are located within a larger chromosomal region similar to pathogenicity Islands. Folia Microbiol (Praha) 48(2):139–147. https://doi.org/10.1016/s1368-7646(98)80026-5

    Article  CAS  Google Scholar 

  25. Hennequin C, Robin F (2016) Correlation between antimicrobial resistance and virulence in Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis 35(3):333–341. https://doi.org/10.1007/s10096-015-2559-7

    Article  CAS  PubMed  Google Scholar 

  26. Cooke NM, Smith SG, Kelleher M, Rogers TR (2010) Major differences exist in frequencies of virulence factors and multidrug resistance between community and nosocomial Escherichia coli bloodstream isolates. J Clin Microbiol 48(4):1099–110435. https://doi.org/10.1128/JCM.02017-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lavigne JP, Blanc-Potard AB, Bourg G, Moreau J, Chanal C, Bouziges N, O’Callaghan D, Sotto A (2006) Virulence genotype and nematode-killing properties of extra-intestinal Escherichia coli producing CTX-M beta-lactamases. Clin Microbiol Infect 12(12):1199–1206. https://doi.org/10.1111/j.1469-0691.2006.01536.x

    Article  CAS  PubMed  Google Scholar 

  28. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, Jenney A, Connor TR, Hsu LY, Severin J, Brisse S, Cao H, Wilksch J, Gorrie C, Schultz MB, Edwards DJ, Nguyen KV, Nguyen TV, Dao TT, Mensink M, Minh VL, Nhu NT, Schultsz C, Kuntaman K, Newton PN, Moore CE, Strugnell RA, Thomson NR (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 112(27):E3574–E3581. https://doi.org/10.1073/pnas.1501049112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Top-notch Academic Programs Project of Jiangsu Higher Education Institution (TAPP, PPZY2015A067). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

QW conceived and designed the experiments and wrote the paper. XYQ, YTT, XTX, YLG, MX, HLC, ML, and YXL performed the experiments. SYZ, QW, ZZ, and LL analyzed the data. SYZ and LL contributed reagents/materials/analysis tools. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Qian Wu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

This study was performed in accordance with the Declaration of Helsinki and approved by the Ethics Committee of Jiangsu Province Hospital of Chinese Medicine and Nanjing Medical University, Nanjing, China (No.2015NL-KS09). Written informed consent was obtained from the patients.

Consent for Publication

The participant has consented to the submission of the data to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Qiu, X., Tan, Y. et al. Genomic Analysis and Molecular Characteristics in Carbapenem-Resistant Klebsiella pneumoniae Strains. Curr Microbiol 79, 391 (2022). https://doi.org/10.1007/s00284-022-03093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03093-z

Navigation