Skip to main content

Advertisement

Log in

Antimicrobial Peptides as a Promising Therapeutic Strategy for Neisseria Infections

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antibiotic resistance is already widespread in the world, and it has become a great health problem. Therefore, comprehensive efforts are needed to minimize the resistance. The exploration of alternative therapies may offer a more targeted approach with less susceptibility to resistance. Even though antimicrobial peptides (AMPs) have been introduced as emerging antibiotic sources, they are not widely discussed in the literature. Since Neisseria infections show resistance to different types of antibiotics, the purpose of this review was to discuss the currently investigated AMPs with anti-Neisseria properties. In the present review, we provide an overview of 24 AMPs with in vitro anti-Neisseria properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data used in the present study is appropriately cited.

Abbreviations

AMP:

Antimicrobial peptide

WHO:

World Health Organization

PID:

Pelvic inflammatory disease

FPRL1:

Formyl peptide receptor-like 1

TNFα:

Tumour necrosis factor alpha

IL-6:

Interleukin 6

LSA-5:

Liver stage antigen -5

HD5:

Human α-defensin 5

HNP-1:

Human neutrophil peptide-1

HE2:

Human epididymis 2

CCPs:

Cell-penetrating peptides

TP10:

Transportan 10

References

  1. Lenz JD, Dillard JP (2018) Pathogenesis of Neisseria gonorrhoeae and the host defense in ascending infections of human fallopian tube. Front Immunol 9:2710

    PubMed  PubMed Central  Google Scholar 

  2. Jen FE-C, Semchenko EA, Day CJ, Seib KL, Jennings MP (2019) The Neisseria gonorrhoeae methionine sulfoxide reductase (MsrA/B) is a surface exposed, immunogenic, vaccine candidate. Front Immunol 10:137

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Unemo M, Shafer WM (2011) Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann N Y Acad Sci 1230:E19

    PubMed  PubMed Central  Google Scholar 

  4. Vyse A, Wolter J, Chen J, Ng T, Soriano-Gabarro M (2011) Meningococcal disease in Asia: an under-recognized public health burden. Epidemiol Infect 139(7):967–985

    CAS  PubMed  Google Scholar 

  5. Bala M, Sood S (2010) Cephalosporin resistance in Neisseria gonorrhoeae. J Glob Infect Dis 2(3):284

    PubMed  PubMed Central  Google Scholar 

  6. Unemo M, Nicholas RA (2012) Emergence of multidrug-resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol 7(12):1401–1422

    CAS  PubMed  Google Scholar 

  7. Girard MP, Preziosi M-P, Aguado M-T, Kieny MP (2006) A review of vaccine research and development: meningococcal disease. Vaccine 24(22):4692–4700

    CAS  PubMed  Google Scholar 

  8. Savoia D, Guerrini R, Marzola E, Salvadori S (2008) Synthesis and antimicrobial activity of dermaseptin S1 analogues. Bioorg Med Chem 16(17):8205–8209

    CAS  PubMed  Google Scholar 

  9. Cruz J, Ortiz C, Guzman F, Fernandez-Lafuente R, Torres R (2014) Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr Med Chem 21(20):2299–2321

    CAS  PubMed  Google Scholar 

  10. Simonetti O, Cirioni O, Mocchegiani F, Cacciatore I, Silvestri C, Baldassarre L et al (2013) The efficacy of the quorum sensing inhibitor FS8 and tigecycline in preventing prosthesis biofilm in an animal model of staphylococcal infection. Int J Mol Sci 14(8):16321–16332

    PubMed  PubMed Central  Google Scholar 

  11. Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE, Grinchuk TM et al (2019) Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics—a novel way to combat antibiotic resistance? Front Cell Infect Microbiol 9:128

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J et al (2012) Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39(12):10957–10970

    PubMed  PubMed Central  Google Scholar 

  13. Moncla B, Mietzner T, Hillier S (2012) In vitro activity of cationic peptides against Neisseria gonorrhoeae and vaginal Lactobacillus species: the effect of divalent cations. Adv Biosci Biotechnol, 3:249–255. https://doi.org/10.4236/abb.2012.33034

    Article  CAS  Google Scholar 

  14. Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 95(16):9541–9546

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bergman P, Johansson L, Asp V, Plant L, Gudmundsson GH, Jonsson AB et al (2005) Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. Cell Microbiol 7(7):1009–1017

    CAS  PubMed  Google Scholar 

  16. Schaller-Bals S, Schulze A, Bals R (2002) Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 165(7):992–995

    PubMed  Google Scholar 

  17. Zughaier SM, Svoboda P, Pohl J, Stephens DS, Shafer WM (2010) The human host defense peptide LL-37 interacts with Neisseria meningitidis capsular polysaccharides and inhibits inflammatory mediators release. PLoS ONE 5(10):e13627

    PubMed  PubMed Central  Google Scholar 

  18. Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J et al (2000) LL-37, the neutrophil granule–and epithelial cell–derived cathelicidin, utilizes formyl peptide receptor–like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192(7):1069–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Duplantier AJ, van Hoek ML (2013) The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Front Immunol 4:143

    PubMed  PubMed Central  Google Scholar 

  20. Cox DL, Sun Y, Liu H, Lehrer RI, Shafer WM (2003) Susceptibility of Treponema pallidum to host-derived antimicrobial peptides. Peptides 24(11):1741–1746

    CAS  PubMed  Google Scholar 

  21. Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A (2016) The human cathelicidin LL-37—a pore-forming antibacterial peptide and host-cell modulator. Biochimica Biophys Acta (BBA)—Biomembr 1858(3):546–566

    CAS  Google Scholar 

  22. Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H et al (2002) Augmentation of the lipopolysaccharide-neutralizing activities of human cathelicidin CAP18/LL-37-derived antimicrobial peptides by replacement with hydrophobic and cationic amino acid residues. Clin Diagn Lab Immunol 9(5):972–982

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kandler K, Shaykhiev R, Kleemann P, Klescz F, Lohoff M, Vogelmeier C et al (2006) The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int Immunol 18(12):1729–1736

    CAS  PubMed  Google Scholar 

  24. Fukumoto K, Nagaoka I, Yamataka A, Kobayashi H, Yanai T, Kato Y et al (2005) Effect of antibacterial cathelicidin peptide CAP18/LL-37 on sepsis in neonatal rats. Pediatr Surg Int 21(1):20–24

    PubMed  Google Scholar 

  25. Sato H, Feix JB (2006) Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochimica Biophys Acta (BBA)—Biomembr 1758(9):1245–1256

    CAS  Google Scholar 

  26. Kai-Larsen Y, Agerberth B (2008) The role of the multifunctional peptide LL-37 in host defense. Front Biosci 13(10):3760–3767

    CAS  PubMed  Google Scholar 

  27. Kiattiburut W, Zhi R, Lee SG, Foo AC, Hickling DR, Keillor JW et al (2018) Antimicrobial peptide LL-37 and its truncated forms, GI-20 and GF-17, exert spermicidal effects and microbicidal activity against Neisseria gonorrhoeae. Hum Reprod 33(12):2175–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones A, Geörg M, Maudsdotter L, Jonsson A-B (2009) Endotoxin, capsule, and bacterial attachment contribute to Neisseria meningitidis resistance to the human antimicrobial peptide LL-37. J Bacteriol 191(12):3861–3868

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Moncla BJ, Pryke K, Rohan LC, Graebing PW (2011) Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Adv Biosci Biotechnol (Print) 2(6):404

    CAS  Google Scholar 

  30. Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S et al (1988) Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 263(32):16709–16713

    CAS  PubMed  Google Scholar 

  31. Shafer W, Qu X-D, Waring A, Lehrer R (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci USA 95(4):1829–1833

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2):82–88

    CAS  PubMed  Google Scholar 

  33. Kushibiki T, Kamiya M, Aizawa T, Kumaki Y, Kikukawa T, Mizuguchi M et al (2014) Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide. Biochim Biophys Acta (BBA)—Proteins Proteomics 1844(3):527–534

    CAS  Google Scholar 

  34. Edwards IA, Elliott AG, Kavanagh AM, Blaskovich MA, Cooper MA (2017) Structure-activity and− toxicity relationships of the antimicrobial peptide tachyplesin-1. ACS Infect Dis 3(12):917–926

    CAS  PubMed  Google Scholar 

  35. Qu X-D, Harwig S, Oren A, Shafer WM, Lehrer RI (1996) Susceptibility of Neisseria gonorrhoeae to protegrins. Infect Immun 64(4):1240–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Steinberg DA, Hurst MA, Fujii CA, Kung A, Ho J, Cheng F et al (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41(8):1738–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Qu X-D, Harwig S, Shafer WM, Lehrer RI (1997) Protegrin structure and activity against Neisseria gonorrhoeae. Infect Immun 65(2):636–639

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee SB, Li B, Jin S, Daniell H (2011) Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol J 9(1):100–115

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV et al (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327(2):231–236

    CAS  PubMed  Google Scholar 

  40. Tamamura H, Murakami T, Horiuchi S, Sugihara K, Otaka A, Takada W et al (1995) Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. Chem Pharm Bull 43(5):853–858

    CAS  Google Scholar 

  41. Hagman KE, Lucas CE, Balthazar JT, Snyder L, Nilles M, Judd RC et al (1997) The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology 143(7):2117–2125

    CAS  PubMed  Google Scholar 

  42. Arpornsuwan T, Buasakul B, Jaresitthikunchai J, Roytrakul S (2014) Potent and rapid antigonococcal activity of the venom peptide BmKn2 and its derivatives against different Maldi biotype of multidrug-resistant Neisseria gonorrhoeae. Peptides 53:315–320

    CAS  PubMed  Google Scholar 

  43. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochimica Biophys Acta (BBA)—Biomembr 1462(1–2):11–28

    CAS  Google Scholar 

  44. Sikora AE, Mills RH, Weber JV, Hamza A, Passow BW, Romaine A et al (2017) Peptide inhibitors targeting the Neisseria gonorrhoeae pivotal anaerobic respiration factor AniA. Antimicrob Agents Chemother 61(8):e00186-e217

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mellies J, Jose J, Meyer T (1997) The Neisseria gonorrhoeae gene aniA encodes an inducible nitrite reductase. Mol Gen Genet MGG 256(5):525–532

    CAS  PubMed  Google Scholar 

  46. Kastin A (2013) Handbook of biologically active peptides. Academic press, Cambridge

    Google Scholar 

  47. Wu Z, Prahl A, Powell R, Ericksen B, Lubkowski J, Lu W (2003) From pro defensins to defensins: synthesis and characterization of human neutrophil pro α-defensin-1 and its mature domain. J Pept Res 62(2):53–62

    CAS  PubMed  Google Scholar 

  48. Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J et al (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3(6):583–590

    CAS  PubMed  Google Scholar 

  49. Jones DE, Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267(32):23216–23225

    CAS  PubMed  Google Scholar 

  50. Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip K-P et al (1998) Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 152(5):1247

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Porter E, Yang H, Yavagal S, Preza GC, Murillo O, Lima H et al (2005) Distinct defensin profiles in Neisseria gonorrhoeae and Chlamydia trachomatis urethritis reveal novel epithelial cell-neutrophil interactions. Infect Immun 73(8):4823–4833

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Scocchi M, Skerlavaj B, Romeo D, Gennaro R (1992) Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins. Eur J Biochem 209(2):589–595

    CAS  PubMed  Google Scholar 

  53. Aarbiou J, Ertmann M, van Wetering S, van Noort P, Rook D, Rabe KF et al (2002) Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J Leukoc Biol 72(1):167–174

    CAS  PubMed  Google Scholar 

  54. Hook EW, Handsfield HH (1999) Gonococcal infections in the adult. In: Holmes KK, Mardh PA, Sparling PF, et al (eds) Sexually transmitted diseases, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  55. Mor A, Nicolas P (1994) Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem 219(1–2):145–154

    CAS  PubMed  Google Scholar 

  56. Mor A, Van Huong N, Delfour A, Migliore-Samour D, Nicolas P (1991) Isolation, amino acid sequence and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry 30(36):8824–8830

    CAS  PubMed  Google Scholar 

  57. Zairi A, Tangy F, Ducos-Galand M, Alonso J-M, Hani K (2007) Susceptibility of Neisseria gonorrhoeae to antimicrobial peptides from amphibian skin, dermaseptin, and derivatives. Diagn Microbiol Infect Dis 57(3):319–324

    CAS  PubMed  Google Scholar 

  58. Navon-Venezia S, Feder R, Gaidukov L, Carmeli Y, Mor A (2002) Antibacterial properties of dermaseptin S4 derivatives with in vivo activity. Antimicrob Agents Chemother 46(3):689–694

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lorin C, Saidi H, Belaid A, Zairi A, Baleux F, Hocini H et al (2005) The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 334(2):264–275

    CAS  PubMed  Google Scholar 

  60. Belaid A, Aouni M, Khelifa R, Trabelsi A, Jemmali M, Hani K (2002) In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J Med Virol 66(2):229–234

    CAS  PubMed  Google Scholar 

  61. Silva O, Ferreira E, Pato MV, Caniça M, Gomes ET (2002) In vitro anti-Neisseria gonorrhoeae activity of Terminalia macroptera leaves. FEMS Microbiol Lett 217(2):271–274

    CAS  PubMed  Google Scholar 

  62. Gaidukov L, Fish A, Mor A (2003) Analysis of membrane-binding properties of dermaseptin analogues: relationships between binding and cytotoxicity. Biochemistry 42(44):12866–12874

    CAS  PubMed  Google Scholar 

  63. Yenugu S, Narmadha G (2010) The human male reproductive tract antimicrobial peptides of the HE2 family exhibit potent synergy with standard antibiotics. J Pept Sci 16(7):337–341

    CAS  PubMed  Google Scholar 

  64. Yenugu S, Hamil KG, French FS, Hall SH (2004) Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2. Reprod Biol Endocrinol 2(1):61

    PubMed  PubMed Central  Google Scholar 

  65. Liao M, Ruddock P, Rizvi A, Hall S, French F, Dillon J (2005) Cationic peptide of the male reproductive tract, HE2a, displays antimicrobial activity against Neisseria gonorrhoeae, Staphylococcus aureus and Enterococcus faecalis. J Antimicrob Chemother 56(5):957–961. https://doi.org/10.1093/jac/dki350

    Article  CAS  PubMed  Google Scholar 

  66. Yenugu S, Hamil KG, Birse CE, Ruben SM, French FS, Hall SH (2003) Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli. Biochem J 372(2):473–483

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50(3):512–542

    Google Scholar 

  68. Yang S-C, Lin C-H, Sung CT, Fang J-Y (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241

    PubMed  PubMed Central  Google Scholar 

  69. Kaletta C, Entian K-D (1989) Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J Bacteriol 171(3):1597–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gómez GC, Castillo JCQ, Pérez JCA, Montoya JEZ (2012) Ethanolic extract from leaves of Bixaorellana L.: a potential natural food preservative. Interciencia 37(7):547–551

    Google Scholar 

  71. Rodriguez J (1996) Review: antimicrobial spectrum, structure, properties and mode of action of nisin, a bacteriocin produced by Lactococcus lactis. Food Sci Technol Int 2(2):61–68

    CAS  Google Scholar 

  72. Field D, Begley M, O’Connor PM, Daly KM, Hugenholtz F, Cotter PD et al (2012) Bioengineered nisin A derivatives with enhanced activity against both gram positive and gram negative pathogens. PLoS ONE 7(10):e46884

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mota-Meira M, Lapointe G, Lacroix C, Lavoie MC (2000) MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother 44(1):24–29

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Madanchi H, Sardari S (2019) The role of antimicrobial peptides in the prevention of sexually transmitted infection (STI). MOJ Womens Health 8(2):192–194

    Google Scholar 

  75. Morency H, Trahan L, Lavoie M (1995) Preliminary grouping of mutacins. Can J Microbiol 41(9):826–831

    CAS  Google Scholar 

  76. Mota-Meira M, Morency H, Lavoie MC (2005) In vivo activity of mutacin B-Ny266. J Antimicrob Chemother 56(5):869–871

    CAS  PubMed  Google Scholar 

  77. Mattick A, Hirsch A (1947) Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet 5:5–8

    Google Scholar 

  78. Parrot M, Caufield P, Lavoie M (1990) Preliminary characterization of four bacteriocins from Streptococcus mutans. Can J Microbiol 36(2):123–130

    CAS  PubMed  Google Scholar 

  79. Mota-Meira M, Lacroix C, LaPointe G, Lavoie MC (1997) Purification and structure of mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. FEBS Lett 410(2–3):275–279

    CAS  PubMed  Google Scholar 

  80. Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 61(11):953–964

    CAS  PubMed  Google Scholar 

  81. Uchida T, Kanazawa T, Kawai M, Takashima Y, Okada H (2011) Therapeutic effects on atopic dermatitis by anti-RelA short interfering RNA combined with functional peptides Tat and AT1002. J Pharmacol Exp Ther 338(2):443–450

    CAS  PubMed  Google Scholar 

  82. Palm C, Netzereab S, Hällbrink M (2006) Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides 27(7):1710–1716

    CAS  PubMed  Google Scholar 

  83. Splith K, Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J 40(4):387–397

    CAS  PubMed  Google Scholar 

  84. Soomets U, Lindgren M, Gallet X, Hällbrink M, Elmquist A, Balaspiri L et al (2000) Deletion analogues of transportan. Biochim Biophys Acta (BBA)—Biomembr 1467(1):165–176

    CAS  Google Scholar 

  85. Derossi D, Chassaing G, Prochiantz A (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8(2):84–87

    CAS  PubMed  Google Scholar 

  86. Yandek LE, Pokorny A, Florén A, Knoelke K, Langel Ü, Almeida PF (2007) Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophys J 92(7):2434–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Takeshima K, Chikushi A, Lee K-K, Yonehara S, Matsuzaki K (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem 278(2):1310–1315

    CAS  PubMed  Google Scholar 

  88. Eriksson OS, Geörg M, Sjölinder H, Sillard R, Lindberg S, Langel Ü et al (2013) Identification of cell-penetrating peptides that are bactericidal to Neisseria meningitidis and prevent inflammatory responses upon infection. Antimicrob Agents Chemother 57(8):3704–3712

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kozlowski LP (2016) IPC–isoelectric point calculator. Biol Direct 11(1):1–16

    Google Scholar 

Download references

Funding

The review was conducted without funding.

Author information

Authors and Affiliations

Authors

Contributions

Idea: PA and AN; Performing a search of the literature: PA; Writing—original draft preparation: PA; Writing—review and editing: PA, MY, MF, MA, NL and AM; Supervision: KG and MHN.

Corresponding authors

Correspondence to Kiarash Ghazvini or Mohammad Hasan Namaei.

Ethics declarations

Conflict of interest

Manuscript title: Review of antimicrobial peptides with anti‐Neisseria activity. The authors have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, P., Yousefi, M., Foadoddini, M. et al. Antimicrobial Peptides as a Promising Therapeutic Strategy for Neisseria Infections. Curr Microbiol 79, 102 (2022). https://doi.org/10.1007/s00284-022-02767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02767-y

Navigation