Skip to main content
Log in

Characterization of Antibiotic Resistance and Virulence Traits Present in Clinical Methicillin-Resistant Staphylococcus aureus Isolates

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious superbug which poses serious health threats to humanity. The severity of the infections depends on the prevalence of virulence factors and antibiotic resistance. In this study, attempts have been made to nominate the two most virulent and multidrug-resistant MRSA isolates demonstrating the preliminary features of intestinal adhesion for the futuristic applications of probiotics and postbiotics as antagonists to combat MRSA infections. In this context, six clinical isolates of MRSA were polyphasically characterized for their identity, multidrug resistance, and few selected virulence determinates such as hemolytic activity and production of coagulase, nuclease, and capsule. The gut colonizing ability of MRSA isolates was assessed by mucoadhesion, auto-aggregation, and cell surface hydrophobicity. An antibiogram of MRSA isolates suggested the resistance towards several antibiotics with multiple antibiotic resistance (MAR) index >0.5 (12/241, 12/206, and 5/255) as well as their genome portraying mecA mediated methicillin resistance. Besides exhibiting strong biofilm formation ability, all the isolates exhibited positive responses towards tested virulence assays coupled with their genome displaying Coa, NucA, and CapE genes. On the other hand, isolates exhibited different levels of auto-aggregation (37.90 ± 1.8 to 51.53 ± 3.1%) and mucin adhesion ability (68.93 ± 0.61% to 86.62 ± 1.96%) with a significant (P ≤ 0.05) variation in adhesion to different hydrocarbons. Finally, multivariate Principal Component Analysis and Hierarchical Cluster Analysis (HCA) heatmap using Euclidean distance measurement indicated MRSA 12/206 and 5/255 as most resistant and virulent isolates with the potential to adhere to the hydrophobic gut niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacIntyre CR, Bui CM (2017) Pandemics, public health emergencies and antimicrobial resistance-putting the threat in an epidemiologic and risk analysis context. Arch Public Health 75:1–6

    Article  Google Scholar 

  2. Ragupathi NKD, Sethuvel DPM, Gajendran R, Anandan S, Walia K, Veeraraghavan B (2019) Horizontal transfer of antimicrobial resistance determinants among enteric pathogens through bacterial conjugation. Current Microbial 76:666–672

    Article  Google Scholar 

  3. Huddleston JR (2014) Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 7:167

    Article  PubMed  PubMed Central  Google Scholar 

  4. Attia H, Szubin R, Yassin AS, Monk JM, Aziz RK (2019) Draft genome sequences of four metallo-beta-lactamase-producing multidrug-resistant Klebsiella pneumoniae clinical isolates, including two colistin-resistant strains, from Cairo Egypt. Microbiol Resour Announc 8:1–3

    Article  Google Scholar 

  5. Asokan GV, Ramadhan T, Ahmed E, Sanad H (2019) WHO global priority pathogens list: a bibliometric analysis of Medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Med J 34:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Foster TJ (2017) Antibiotic resistance in Staphylococcus aureus: current status and future prospects. FEMS Microbiol Rev 41:430–449

    Article  CAS  PubMed  Google Scholar 

  7. Mascaro V, Squillace L, Nobile CG, Papadopoli R, Bosch T, Schouls LM, Casalinuovo F, Musarella R, Pavia M (2019) Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) carriage and pattern of antibiotic resistance among sheep farmers from southern Italy. Infect Drug Resist 12:2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Udo EE, Boswihi SS, Mathew B, Noronha B, Verghese T, Al-Jemaz A, Al-Saqer F (2020) Emergence of methicillin-resistant Staphylococcus aureus belonging to clonal complex 15 (CC15-MRSA) in Kuwait hospitals. Infect Drug Resist 13:617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crago B, Ferrato C, Drews SJ, Svenson LW, Tyrrell G, Louie M (2012) Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in food samples associated with foodborne illness in Alberta, Canada from 2007 to 2010. Food Microbial 32:202–205

    Article  CAS  Google Scholar 

  10. Lane AB, Copeland NK, Onmus-Leone F, Lawler JV (2018) Methicillin-resistant Staphylococcus aureus as a probable cause of antibiotic-associated enterocolitis. Case Rep Infect Dis 2018:1–3

    Google Scholar 

  11. Krezalek MA, Hyoju S, Zaborin A, Okafor E, Chandrasekar L, Bindokas V, Guyton K, Montgomery CP, Daum RS, Zaborina O, Boyle-Vavra S (2018) Can methicillin-resistant Staphylococcus aureus silently travel from the gut to the wound and cause postoperative infection? Modeling the “Trojan horse hypothesis.” Ann Surg 267:749–758

    Article  PubMed  Google Scholar 

  12. Srisuwan S, Voravuthikunchai SP (2017) Rhodomyrtus tomentosa leaf extract inhibits methicillin-resistant Staphylococcus aureus adhesion, invasion, and intracellular survival in human HaCaT keratinocytes. Microb Drug Resist 23:1002–1012

    Article  CAS  PubMed  Google Scholar 

  13. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11:217–218

    Article  CAS  PubMed  Google Scholar 

  14. Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ (2012) Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS ONE 7:33865

    Article  Google Scholar 

  15. O’sullivan DJ, Klaenhammer TR (1993) Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol 59:2730–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bauer AW, Kirby WMM, Sherris JC, Turck M (1996) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:493–496

    Article  Google Scholar 

  17. CLSI (2013) Performance standards for antimicrobial susceptibility testing CLSI approved standard M100–S23. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  18. Gowrishankar S, Kamaladevi A, Balamurugan K, Pandian SK (2016) In vitro and in vivo biofilm characterization of methicillin-resistant Staphylococcus aureus from patients associated with pharyngitis infection. BioMed Res Int 2016:1–13

    Article  Google Scholar 

  19. Lee HY, Zou Y, Ahn J (2013) Physiochemical and molecular properties of antimicrobial-exposed Staphylococcus aureus during the planktonic-to-biofilm transition. Ann Microbiol 63:1213–1217

    Article  CAS  Google Scholar 

  20. Rahimi F, Katouli M, Karimi S (2016) Biofilm production among methicillin resistant Staphylococcus aureus strains isolated from catheterized patients with urinary tract infection. Microb Pathog 98:69–76

    Article  CAS  PubMed  Google Scholar 

  21. Hou W, Sun X, Wang Z, Zhang Y (2012) Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections. Investig Ophthalmol Vis Sci 53:5624–5631

    Article  CAS  Google Scholar 

  22. Meidong R, Khotchanalekha K, Doolgindachbaporn S, Nagasawa T, Nakao M, Sakai K, Tongpim S (2018) Evaluation of probiotic Bacillus aerius B81e isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Pla-mong Pangasius bocourti. Fish Shellfish Immun 73:1–10

    Article  CAS  Google Scholar 

  23. Pradhan D (2017) Assessing preclinical safety of indigenous probiotic L. fermentum Lf1 strains. Doctoral dissertation, NDRI, Karnal

  24. Gajdács M (2019) The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics 28:52

    Article  Google Scholar 

  25. Li Y, Lee Y, Seo Y, Hwang Y (2019) Relationship of multidrug-resistant gene and extended-spectrum carbapenem-resistance in Staphylococcus aureus. Biocell 43:263

    Article  CAS  Google Scholar 

  26. Becker K, Van Alen S, Idelevich EA, Schleimer N, Seggewiß J, Mellmann A, Kaspar U, Peters G (2018) Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg Infect Dis 24:242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang N, Li J, Feßler AT, Wang Y, Schwarz S, Wu C (2019) Novel pseudo-staphylococcal cassette chromosome mec element (φSCC mec T55) in MRSA ST9. J Antimicrob Chemoth 74:819–820

    Article  CAS  Google Scholar 

  28. Chavadi M, Narasanna R, Chavan A, Oli AK (2018) Prevalence of methicillin resistant and virulence determinants in clinical isolates of Staphylococcus aureus. Open Infect Dis J 10:108–115

    Article  Google Scholar 

  29. Bhatia A, Kalra J, Kohli S, Kakati B, Kaushik R (2018) Antibiotic resistance pattern in intensive care unit of a tertiary care teaching hospital. Int J Basic Clin Pharmacol 7:906

    Article  Google Scholar 

  30. Udobi CE, Obajuluwa AF, Onaolapo JA (2013) Prevalence and antibiotic resistance pattern of methicillin-resistant Staphylococcus aureus from an orthopaedic hospital in Nigeria. BioMed Res Int 2013:1–4

    Article  Google Scholar 

  31. Ko YP, Kuipers A, Freitag CM, Jongerius I, Medina E, van Rooijen WJ, Spaan AN, van Kessel KP, Höök M, Rooijakkers SH (2013) Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 9:1003816

    Article  Google Scholar 

  32. Rothman A, Lio J, Lee YI (2018) MRSA colitis: an under-recognized cause of septic shock. Am J Respir Crit Care Med 197:A5187–A5187

    Google Scholar 

  33. Melgar-Lalanne G, Rivera-Espinoza Y, Téllez-Medina DI, Hernández-Sánchez H (2015) Cell surface properties of halotolerant probiotic lactobacilli. J Adv Biotechnol 4:404–413

    Google Scholar 

  34. Rokana N, Singh BP, Thakur N, Sharma C, Gulhane RD, Panwar H (2018) Screening of cell surface properties of potential probiotic lactobacilli isolated from human milk. J Dairy Res 85:347–354

    Article  CAS  PubMed  Google Scholar 

  35. Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987

    Article  CAS  PubMed  Google Scholar 

  36. Choi NY, Bae YM, Lee SY (2015) Cell surface properties and biofilm formation of pathogenic bacteria. Food Sci Biotechnol 24:2257–2264

    Article  CAS  Google Scholar 

  37. Trunk T, Khalil HS, Leo JC (2018) Bacterial autoaggregation. AIMS Microbiol 4:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gogra AB, Yao J, Sandy EH, Zheng S, Zaray G, Koroma BM, Hui Z (2010) Cell surface hydrophobicity (CSH) of Escherichia coli, Staphylococcus aureus and Aspergillus niger and the biodegradation of diethyl phthalate (DEP) via microcalorimetry. Am J Sci 6:78–88

    Google Scholar 

  39. Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743

    Article  CAS  PubMed  Google Scholar 

  40. Ghasemian A, Peerayeh SN, Bakhshi B, Mirzaee M (2016) Comparison of biofilm formation between methicillin-resistant and methicillin-susceptible isolates of Staphylococcus aureus. Iran Biomed J 20:175

    PubMed  PubMed Central  Google Scholar 

  41. Ghasemian A, Peerayeh SN, Bakhshi B, Mirzaee M (2015) The microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) genes among clinical isolates of Staphylococcus aureus from hospitalized children. Iran J Pathol 10:258

    PubMed  PubMed Central  Google Scholar 

  42. Ray SM, Harrison LH, Lynfield R, Dumyati G (2018) Invasive methicillin-resistant Staphylococcus aureus infections among persons who inject drugs—six sites, 2005–2016. Morb Mortal Wkly Rep 67:625

    Article  Google Scholar 

  43. Celebioglu HU, Olesen SV, Prehn K, Lahtinen SJ, Brix S, Hachem MA, Svensson B (2017) Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM. J Proteomics 163:102–110

    Article  CAS  PubMed  Google Scholar 

  44. Shuter J, Hatcher VB, Lowy FD (1996) Staphylococcus aureus binding to human nasal mucin. Infect Immun 64:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nami Y, Panahi B, Jalaly HM, Bakhshayesh RV, Hejazi MA (2020) Application of unsupervised clustering algorithm and heat-map analysis for selection of lactic acid bacteria isolated from dairy samples based on desired probiotic properties. LWT Food Sci Technol 118:108839

    Article  CAS  Google Scholar 

  46. Shome BR, Das Mitra S, Bhuvana M, Krithiga N, Velu D, Shome R, Isloor S, Barbuddhe SB, Rahman H (2011) Multiplex PCR assay for species identification of bovine mastitis pathogens. J Appl Microbiol 111:1349–1356

    Article  CAS  PubMed  Google Scholar 

  47. Pu W, Su Y, Li J, Li C, Yang Z, Deng H, Ni C (2014) High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with bovine mastitis in China. PLoS ONE 9:88134

    Article  Google Scholar 

  48. El-Behiry A, Elsayed M, Marzouk E, Bathich Y (2015) Detection of virulence genes in Staphylococcus aureus and Streptococcus agalatctiae isolated from mastitis in the middle east. Br Microbiol Res J 10:1–9

    Article  CAS  Google Scholar 

  49. Igbinosa EO, Beshiru A, Akporehe LU, Oviasogie FE, Igbinosa OO (2016) Prevalence of methicillin-resistant Staphylococcus aureus and other Staphylococcus species in raw meat samples intended for human consumption in Benin city, Nigeria: implications for public health. Int J Env Res Pub He 13:949

    Article  Google Scholar 

  50. Batte JL, Samanta D, Elasri MO (2016) MsaB activates capsule production at the transcription level in Staphylococcus aureus. Microbiology 162:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are greatly thankful to the Director, ICAR-National Dairy Research Institute, Karnal for providing the necessary research facilities to carry out the present study. BHN is thankful to the Indian Council of Agricultural Research (ICAR), New Delhi for providing a Junior Research Fellowship (JRF) during his Master’s degree program. We are highly thankful to the All India Institute of Medical Sciences (AIIMS), New Delhi for providing clinical isolates of MRSA for R&D purposes.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Contributions

BHN: study/research execution, methodology, formal Analysis, and original draft preparation, CR: research execution, formal analysis, and validation, RHM: conceptualization, funding acquisition, methodology, editing, supervision, validation, and writing—review and editing.

Corresponding author

Correspondence to Rashmi Hogarehalli Mallappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The clinical isolates used in the study have been approved by the Institute Ethics Committee of All India Institute of Medical Sciences, New Delhi (Ref No: IEC-484/02.08.2019, RP-54/2019).

Consent for Publication

All the authors concur with the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 45 kb)

Supplementary file2 (DOCX 4587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nataraj, B.H., Ramesh, C. & Mallappa, R.H. Characterization of Antibiotic Resistance and Virulence Traits Present in Clinical Methicillin-Resistant Staphylococcus aureus Isolates. Curr Microbiol 78, 2001–2014 (2021). https://doi.org/10.1007/s00284-021-02477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02477-x

Navigation