Skip to main content
Log in

Glyphosate Biodegradation Potential in Soil Based on Glycine Oxidase Gene (thiO) from Bradyrhizobium

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Despite the intensive use of glyphosate (GP) and its ubiquitous presence in the environment, studies addressing the presence of microbial genes involved in glyphosate degradation in natural conditions are scarce. Based on the agronomical importance of Bradyrhizobium genus and its metabolic versatility, we tested the hypothesis that species or genotypes of Bradyrhizobium could be a proxy for GP degrader potential in soil. A quantitative PCR assay was designed to target a specific region of the glycine oxidase gene (thiO), involved in the oxidation of glyphosate to AMPA, from known sequences of Bradyrhizobium species. The abundance of the thiO gene was determined in response to herbicide application in soils with different GP exposure history both under field and microcosm conditions. The gene coding for RNA polymerase subunitB (rpoB) was used as a reference for the abundance of total Bradyrhizobia. The assay using the designed primers was linear over a very large concentration range of the target and showed high efficiency and specificity. In a field experiment, there was a differential response related to the history of glyphosate use and the native Bradyrhizobium genotypes. In a soil without previous exposure to herbicides, thiO gene increased over time after glyphosate application with most genotypes belonging to the B. jicamae and B. elkanni supergroups. Conversely, in an agricultural soil with more than 10 years of continuous glyphosate application, the abundance of thiO gene decreased and most genotypes belonged to B. japonicum supergroup. In a microcosm assay, the amount of herbicide degraded after a single application was positively correlated to the number of thiO copies in different agricultural soils from the Pampean Region. Our results suggest that Bradyrhizobium species are differently involved in glyphosate degradation, denoting the existence of metabolically versatile microorganisms which can be explored for sustainable agriculture practices. The relationship between the abundance of thiO gene and the GP degraded in soil point to the use of thiO gene as a proxy for GP degradation in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors of this work declare that all data and materials as well as software applications used support their published results. The data are either deposited in public genomic databases or presented in the main manuscript.

References

  1. Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, vom Saal FS, Welshons WV, Benbrook CM (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health 15:19. https://doi.org/10.1186/s12940-016-0117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh S, Kumar V, Gill JPK, Datta S, Singh S, Dhaka V, Kapoor D, Wani AB, Dhanjal DS, Kumar M, Harikumar SL, Singh J (2020) Herbicide glyphosate: toxicity and microbial degradation. Int J Environ Res Public Health 17:7519. https://doi.org/10.3390/ijerph17207519

    Article  CAS  PubMed Central  Google Scholar 

  3. Zhan H, Feng Y, Fan X, Chen S (2018) Recent advances in glyphosate biodegradation. Appl Microbiol Biot 102:5033–5043. https://doi.org/10.1007/s00253-018-9035-0

    Article  CAS  Google Scholar 

  4. Hove-Jensen B, Zechel DL, Jochimsen B (2014) Utilization of glyphosate as phosphate source: Biochemistry and genetics of bacterial carbon phosphorus lyase. Microbiol Mol Biol R 78:176–197. https://doi.org/10.1128/MMBR.00040-13

    Article  Google Scholar 

  5. Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Epiktetov DO, Leontievsky AA (2015) Microbial degradation of glyphosate herbicides. Appl Biochem Microbiol 51:188–195. https://doi.org/10.1134/S0003683815020209

    Article  CAS  Google Scholar 

  6. Shames SL, Wackett LP, LaBarge MS, Kuczkowski RL, Walsh CT (1987) Fragmentative and stereochemical isomerization probes for hemolytic carbon to phosphorus bond scission catalyzed by bacterial carbon-phosphorus lyase. Bioorg Chem 15:366–373. https://doi.org/10.1016/0045-2068(87)90033-2

    Article  CAS  Google Scholar 

  7. Levering PR, Dijkhuizen L, Harder W (1984) Metabolic regulation in the facultative methylotroph Arthrobacter P1. Growth on primary amines as carbon and energy sources. Arch Microbiol 139:188e195. https://doi.org/10.1007/BF00401998

    Article  Google Scholar 

  8. Bhatt P, Joshi T, Bhatt K, Zhang W, Huang Y, Chen S (2021) Binding interaction of glyphosate with glyphosate oxidoreductase and C–P lyase: molecular docking and molecular dynamics simulation studies. J Hazard Mater 409:124927. https://doi.org/10.1016/j.jhazmat.2020.124927

    Article  CAS  PubMed  Google Scholar 

  9. Shushkova TV, Vinokurova NG, Baskunov BP, Zelenkova NF, Sviridov AV, Ermakova IT, Leontievsky AA (2016) Glyphosate acetylation as a specific trait of Achromobacter sp. Kg 16 physiology. Appl Microbiol Biotechnol 100:847–855. https://doi.org/10.1007/s00253-015-7084-1

    Article  CAS  PubMed  Google Scholar 

  10. Iyer R, Iken B, Damania A, Krieger J (2018) Whole genome analysis of six organophosphate-degrading rhizobacteria reveals putative agrochemical degradation enzymes with broad substrate specificity. Environ Sci Pollut Res 25:13660–13675. https://doi.org/10.1007/s11356-018-1435-2

    Article  CAS  Google Scholar 

  11. Huntscha S, Stravs MA, Bühlmann A, Ahrens AH, Frey JE, Pomati F, Hollender J, Buerge IJ, Balmer ME, Poiger T (2018) Seasonal dynamics of glyphosate and AMPA in Lake Greifensee: Rapid microbial degradation in the Epilimnion during summer. Environ Sci Technol 52:4641–4649. https://doi.org/10.1021/acs.est.8b00314

    Article  CAS  PubMed  Google Scholar 

  12. Chen CM, Ye QZ, Zhu ZM, Wanner BL, Walsh CT (1990) Molecular biology of carbon phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C–P lyase activity in Escherichia coli B. J Biol Chem 265:4461–4471

    Article  CAS  Google Scholar 

  13. Hove-Jensen B, Rosenkrantz TJ, Zechel DL, Willemoës M (2010) Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli. J Bacteriol 192:370–374. https://doi.org/10.1128/JB.01131-09

    Article  CAS  PubMed  Google Scholar 

  14. Kertesz M, Elgorriaga A, Amrhein N (1991) Evidence for two distinct phosphonate-degrading enzymes (C–P lyases) in Arthrobacter sp. GLP-1. Biodegradation 2:53–59. https://doi.org/10.1007/BF00122425

    Article  CAS  PubMed  Google Scholar 

  15. Bazot S, Lebeau T (2008) Simultaneous mineralization of glyphosate and diuron by a consortium of three bacteria as free- and/or immobilized-cells formulations. Appl Microbiol Biotechnol 77:1351–1358. https://doi.org/10.1007/s00253-007-1259-3

    Article  CAS  PubMed  Google Scholar 

  16. Jacob GS, Garbow JR, Hallas LE, Kimack NM, Kishore GM, Schaefer J (1988) Metabolism of glyphosate in Pseudomonas sp. strain LBr. App Environ Microbiol 54:2953–2958. https://doi.org/10.1128/AEM.54.12.2953-2958.1988

    Article  CAS  Google Scholar 

  17. Pedotti M, Rosini E, Molla G, Moschetti T, Savino C, Vallone B, Pollegioni L (2009) Glyphosate resistance by engineering the flavoenzyme glycine oxidase. J Biol Chem 284:36415–36423. https://doi.org/10.1074/jbc.M109.051631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han H, Zhu B, Fu X, You S, Wang B, Li Z, Zhao W, Peng R, Yao Q (2015) Overexpression of D-amino acid oxidase from Bradyrhizobium japonicum, enhances resistance to glyphosate in Arabidopsis thaliana. Plant Cell Rep 34:2043–2051. https://doi.org/10.1007/s00299-015-1850-5

    Article  CAS  PubMed  Google Scholar 

  19. Zhan T, Zhang K, Chen Y, Lin Y, Wu G, Zhang L, Yao P, Shao Z, Liu Z (2013) Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution. PLoS ONE 8:e79175. https://doi.org/10.1371/journal.pone.0079175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang K, Guo Y, Yao P, Lin Y, Kumar A, Liu Z, Wu G, Zhang L (2016) Characterization and directed evolution of BliGO, a novel glycine oxidase from Bacillus licheniformis. Enzyme Microb Tech 85:12–18. https://doi.org/10.1016/j.enzmictec.2015.12.012

    Article  CAS  Google Scholar 

  21. Saleh-Lakha S, Miller M, Campbell RG, Schneider K, Elahimanesh P, Hart MM, Trevors JT (2005) Microbial gene expression in soil: methods, applications and challenges. J Microbiol Meth 63:1–19. https://doi.org/10.1016/j.mimet.2005.03.007

    Article  CAS  Google Scholar 

  22. Okubo T, Tsukui T, Maita H, Okamoto S, Oshima K, Fujisawa T, Saito A, Futamata H, Hattori R, Shimomura Y, Haruta S, Morimoto S, Wang Y, Sakai Y, Hattori M, Aizawa S, Nagashima KV, Masuda S, Hattori T, Yamashita A, Bao Z, Hayatsu M, Kajiya-Kanegae H, Yoshinaga I, Sakamoto K, Toyota K, Nakao M, Kohara M, Anda M, Niwa R, Jung-Hwan P, Sameshima-Saito R, Tokuda S, Yamamoto S, Yamamoto S, Yokoyama T, Akutsu T, Nakamura Y, Nakahira-Yanaka Y, Takada Hoshino Y, Hirakawa H, Mitsui H, Terasawa K, Itakura M, Sato S, Ikeda-Ohtsubo W, Sakakura N, Kaminuma E, Minamisawa K (2012) Complete genome sequence of Bradyrhizobium sp S23321: Insights into symbiosis evolution in soil oligotrophs. Microbes Environ 27:306–315. https://doi.org/10.1264/jsme2.ME11321

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schneijderberg M, Schmitz L, Cheng X, Polman S, Franken C, Geurts R, Bisseling T (2018) A genetically and functionally diverse group of non diazotrophic Bradyrhizobium spp colonizes the root endophytic compartment of Arabidopsis thaliana. BMC Plant Biol 18:61. https://doi.org/10.1186/s12870-018-1272-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zabaloy MC, Gómez MA (2005) Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth. Biol Fertil Soils 42:83–88. https://doi.org/10.1007/s00374-005-0012-2

    Article  Google Scholar 

  25. Bailey TL, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208. https://doi.org/10.1093/nar/gkp335

    Article  CAS  Google Scholar 

  26. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer BLAST: a tool to design target specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perticari A, Parra R, Balatti P, Fiqueni M, Rodriguez Caceres E (1996) Selección de cepas de Bradyrhizobium japonicum, B. elkanii y Sinorhizobium fredii para la inoculación de soja, p 103–104. Memorias de la XVIII Reunión Latinoamericana de Rizobiología, 23 al 27 de septiembre 1996, Santa Cruz de La Sierra, Bolivia.

  29. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1.59-1.61

    Google Scholar 

  30. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  31. Guijarro KH, Aparicio VA, De Gerónimo E, Castellote M, Figuerola E, Costa JL, Erijman L (2018) Soil microbial communities and glyphosate decay in soils with different herbicide application history. Sci Total Environ 634:974–982. https://doi.org/10.1016/j.scitotenv.2018.03.393

    Article  CAS  PubMed  Google Scholar 

  32. Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of Soil Analysis, Part 1 Agron. 2nd ed. Soil Science Society of America, Madison. 9, pp 255–278

  33. Chapman HD (1965) Cation exchange capacity. Methods of Soil Analysis. Agronomy Series Number 9. American Society of Agronomy, Madison, pp 891–901

  34. Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. Am Soc Agron 9:539–579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29

    Article  Google Scholar 

  35. De Gerónimo E, Aparicio V, Costa JL (2018) Glyphosate sorption to soils of Argentina. Estimation of affinity coefficient by pedotransfer function. Geoderma 322:140–148. https://doi.org/10.1016/j.geoderma.2018.02.037

    Article  CAS  Google Scholar 

  36. Hungria M, Menna P, Delamuta JRM (2015) Bradyrhizobium, the ancestor of all rhizobia: phylogeny of housekeeping and nitrogen-fixation genes. Biol Nitrogen Fixation 2:191–202. https://doi.org/10.1002/9781119053095.CH18

    Article  Google Scholar 

  37. Poirier S, Rué O, Peguilhan R, Coeuret G, Zagorec M, Champomier-Vergès MC, Loux V, Chaillou S (2018) Deciphering intra-species bacterial diversity of meat and seafood spoilage microbiota using gyrB amplicon sequencing: A comparative analysis with 16S rDNA V3–V4 amplicon sequencing. PLoS ONE 13(9):e0204629. https://doi.org/10.1371/journal.pone.0204629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415. https://doi.org/10.1016/j.soilbio.2008.05.021

    Article  CAS  Google Scholar 

  39. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x

    Article  CAS  PubMed  Google Scholar 

  40. Newman MM, Lorenz N, Hoilett N, Lee NR, Dick RP, Liles MR, Ramsier C, Kloepper JW (2016) Changes in rhizosphere bacterial gene expression following glyphosate treatment. Sci Total Environ 553:32–41. https://doi.org/10.1016/j.scitotenv.2016.02.078

    Article  CAS  PubMed  Google Scholar 

  41. Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MPA, Blom J, Stepkowski T, Kyrpides NC, Woyke T, Shapiro N, Whitman WB, Venter SN, Steenkamp ET (2019) Genome-informed Bradyrhizobium taxonomy: where to from here? Syst Appl Microbiol 42:427–439. https://doi.org/10.1016/j.syapm.2019.03.006

    Article  PubMed  Google Scholar 

  42. Zablotowicz RM, Reddy KN (2004) Impact of Glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview. J Environ Qual 33:825–831. https://doi.org/10.2134/jeq2004.0825

    Article  CAS  PubMed  Google Scholar 

  43. Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, Wang S, Wang J, Gilbert LB, Li YR (2012) Comparative genomics of rhizobia nodulating soy-bean suggests extensive recruitment of lineage-specific genes in adaptations. PNAS 109:8629–8634. https://doi.org/10.1073/pnas.1120436109

    Article  PubMed  Google Scholar 

  44. Reeve W, Ardley J, Tian R, Eshragi L, Yoon JW, Ngamwisetkun P, Seshadri R, Ivanova NN, Kyrpides NC (2015) A genomic encyclopedia of the root nodule bacteria: assessing genetic diversity through a systematic biogeographic survey. Stand Genomic Sci 10:14. https://doi.org/10.1186/1944-3277-10-14

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bento CP, Yang X, Gort G, Xue S, van Dam R, Zomer P, Molf H, Ritsema CJ, Geissen V (2016) Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Sci Total Environ 572:301–311. https://doi.org/10.1016/j.scitotenv.2016.07.215

    Article  CAS  PubMed  Google Scholar 

  46. Laitinen P, Siimes K, Eronen L, Rämö S, Welling L, Oinonen S, Mattsoff L, Ruohonen-Lehto M (2006) Fate of herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils. Pest Manage Sci 62:473–491. https://doi.org/10.1002/ps.1186

    Article  CAS  Google Scholar 

  47. Okada E, Costa JL, Bedmar F (2016) Adsorption and mobility of glyphosate in different soils under no till and conventional tillage. Geoderma 263:78–85. https://doi.org/10.1016/j.geoderma.2015.09.009

    Article  CAS  Google Scholar 

  48. Gómez Ortiz AM, Okada E, Bedmar F, Costa JL (2017) Sorption and desorption of glyphosate in mollisols and ultisols soils of Argentina. Environ Toxicol Chem 36:2587–2592. https://doi.org/10.1002/etc.3851

    Article  CAS  PubMed  Google Scholar 

  49. Morales ME, Allegrini M, Basualdo J, Villamil MB, Zabaloy MC (2020) Primer design to assess bacterial degradation of glyphosate and other phosphonates. J Microbiol Methods 169:105814. https://doi.org/10.1016/j.mimet.2019.105814

    Article  CAS  PubMed  Google Scholar 

  50. Allegrini M, Gomez EDV, Smalla K, Zabaloy MC (2019) Suppression treatment differentially influences the microbial community and the occurrence of broad host range plasmids in the rhizosphere of the model cover crop Avena sativa L. PLoS One 14:e0223600. https://doi.org/10.1371/journal.pone.0223600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Prof. Graciela Caruso for her help in data statistical analysis and María de Carmen D’Elía and Maximiliano Dosanto for their support in soil analysis. This work was financed by INTA through the Program of Postgraduation and Training (Res. 743/12) and Project 2019-PD-E2-I039-002.

Funding

This work was financed by Instituto Nacional de Tecnología Agropecuaria (INTA) through Research Project 2019-PD-E2-I039-002 and Program of Postgraduation and Training (Res. 743/12) granted to Keren Hernández Guijarro.

Author information

Authors and Affiliations

Authors

Contributions

KHG and LE conceived and designed the study. Research and data analysis were performed by KHG and EDG. The first draft of the manuscript was written by KHG and LE and all authors commented on previous versions of this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leonardo Erijman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Not applicable. This study did not involve human participants or laboratory animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 51 kb)

Supplementary file2 (PDF 605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández Guijarro, K., De Gerónimo, E. & Erijman, L. Glyphosate Biodegradation Potential in Soil Based on Glycine Oxidase Gene (thiO) from Bradyrhizobium. Curr Microbiol 78, 1991–2000 (2021). https://doi.org/10.1007/s00284-021-02467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02467-z

Navigation