Skip to main content

Advertisement

Log in

Impact of Bacillus licheniformis SV1 Derived Glycolipid on Candida glabrata Biofilm

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In the present investigation, we have evaluated the antibiofilm potential of Bacillus licheniformis SV1 derived glycolipid against C. glabrata biofilm. Impact of isolated glycolipid on the viability of C. glabrata and on inhibiting as well as eradicating ability of its biofilm were studied. Further, morphological alterations, reactive oxygen species generation (ROS) production and transcriptional expression of selected genes (RT-PCR) of C. glabrata in response with isolated glycolipid were studied. The isolated glycolipid (1.0 mg ml−1) inhibited and eradicated C. glabrata biofilm approximately 80% and 60%, respectively. FE-SEM images revealed glycolipid exposure results in architectural alteration and eradication of C. glabrata biofilm and ROS generation. Transcriptional studies of selected genes showed that the expression of AUS1, FKS1 and KRE1 were down-regulated, while that of ergosterol biosynthesis pathway and multidrug transporter increased, in the presence of glycolipid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PI:

Propidium iodide

DCFDA:

2′,7′-Dichlorodihydrofluorescein diacetate

XTT:

2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt

ROS:

Reactive oxygen species

FE-SEM:

Field emission scanning electron microscopy

PBS:

Phosphate buffer saline

YPD:

Yeast peptone dextrose broth medium

FBS:

Foetal bovine serum

RPMI:

Roswell park memorial institute 1640 medium

TLC:

Thin-layer chromatography

HPLC:

High-performance liquid chromatography

FTIR:

Fourier transform infrared microscopy

GC-MS:

Gas chromatography–Mass spectroscopy

NMR:

Nuclear magnetic resonance

MTP:

Microtitre plate

BEC80 :

Biofilm inhibitory concentration

BEC60 :

Biofilm eradicating concentration

References

  1. Delaloye J, Calandra T (2014) Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence 5:161–169

    Article  Google Scholar 

  2. Lohse MB, Gulati M, Craik CS, Johnson AD, Nobile CJ (2020) Combination of antifungal drugs and protease inhibitors prevent Candida albicans biofilm formation and disrupt mature biofilms. Front Microbiol 11:1027

    Article  Google Scholar 

  3. Gupta P, Gupta S, Sharma M, Kumar N, Pruthi V, Poluri KM (2018) Effectiveness of phytoactive molecules on transcriptional expression, biofilm matrix, and cell wall components of Candida glabrata and its clinical isolates. ACS Omega 3:12201–12214

    Article  CAS  Google Scholar 

  4. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ (2018) Invasive candidiasis. Nat Rev Dis Primers 4:18026

    Article  Google Scholar 

  5. Mean M, Marchetti O, Calandra T (2008) Bench-to-bedside review: Candida infections in the intensive care unit. Crit Care 12:204

    Article  Google Scholar 

  6. Fu J, Ding Y, Wei B et al (2017) Epidemiology of Candida albicans and non-C.albicans of neonatal candidemia at a tertiary care hospital in western China. BMC Infect Dis 17:329

    Article  Google Scholar 

  7. CDC. Antibiotic Resistance Threats in the United States (2019) Atlanta, GA: U.S. Department of Health and Human Services, CDC

  8. Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20:5–10

    Article  Google Scholar 

  9. Kumar K, Askari F, Sahu MS, Kaur R (2019) Candida glabrata: a lot more than meets the eye. Microorganisms 7:1–22

    Google Scholar 

  10. Brunke S, Hube B (2013) Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell Microbiol 15(5):701–708

    Article  CAS  Google Scholar 

  11. Mitchell KF, Zarnowski R, Andes DR (2016) Fungal super glue: the biofilm matrix and its composition, assembly, and functions. PLoS Pathog 12(9):e1005828

    Article  Google Scholar 

  12. Kaur R, Margaret RD, PCormack LB (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384

    Article  CAS  Google Scholar 

  13. Kuhn DM, Vyas VK (2012) The Candida glabrata adhesin Epa1p causes adhesion, phagocytosis, and cytokine secretion by innate immune cells. FEMS Yeast Res 12:398–414

    Article  CAS  Google Scholar 

  14. Gupta P, Chanda R, Rai N, Kataria VK, Kumar N (2016) Antihypertensive, amlodipine besilate inhibits growth and biofilm of human fungal pathogen Candida. Assay Drug Dev Technol 14:291–297

    Article  CAS  Google Scholar 

  15. Fraser M, Borman AM, Thorn R, Lawrance LM (2020) Resistance to echinocandin antifungal agents in the United Kingdom in clinical isolates of Candida glabrata: fifteen years of interpretation and assessment. Med Mycol 58:219–226

    CAS  PubMed  Google Scholar 

  16. Sampaio P, Pais C (2014) Epidemiology of invasive candidiasis and challenges for the mycology laboratory: specificities of Candida glabrata. Curr Clin Microbiol Rep 1:1–9

    Article  Google Scholar 

  17. Haque F, Alfatah M, Ganesan K, Bhattacharyya MS (2016) Inhibitory effect of sophorolipid on Candida albicans biofilm formation and hyphal growth. Sci Rep 6:23575

    Article  CAS  Google Scholar 

  18. Gupta S, Varshney R, Jha RK, Pruthi PA, Roy P, Pruthi V (2017) In vitro apoptosis induction in human prostate cancer cell line by thermotolerant glycolipid from Bacillus licheniformis SV1. J Surfact Deterg 20:1141–1151

    Article  CAS  Google Scholar 

  19. Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605

    Article  CAS  Google Scholar 

  20. Janek T, Lukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24

    Article  CAS  Google Scholar 

  21. Pasternak G, Askitosari TD, Rosenbaum MA (2020) Biosurfactants and synthetic surfactants in bioelectrochemical systems: a mini-review. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00358

    Article  PubMed  PubMed Central  Google Scholar 

  22. Płaza G, Achal V (2020) Biosurfactants: eco-friendly and innovative biocides against biocorrosion. Int J Mol Sci 21:2152

    Article  Google Scholar 

  23. Gupta S, Raghuwanshi N, Varshney R, Banat IM, Srivastava AK, Pruthi P, Pruthi V (2017) Accelerated in vivo wound healing evaluation of microbial glycolipid containing ointment as a transdermal substitute. Biomed Pharmacother 94:1186–1196

    Article  CAS  Google Scholar 

  24. Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants production. Front Microbiol 5:1–18

    Article  Google Scholar 

  25. Araujo LV, Guimaraes CR, Marquita RLS, Santiago VMJ, Souza MP, Nitschke M, Freire DMG (2016) Rhamnolipid and surfactin: anti-adhesion/antibiofilm and antimicrobial effects. Food Control 63:171–178

    Article  Google Scholar 

  26. Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP (2010) Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf B Biointerfaces 81:242–248

    Article  CAS  Google Scholar 

  27. Inès M, Dhouha G (2015) Glycolipid biosurfactants: potential related biomedical and biotechnological applications. Carbohydr Res 416:59–69

    Article  Google Scholar 

  28. Gupta P, Nath S, Meena RC, Kumar N (2014) Comparative effects of hypoxia and hypoxia mimetic cobalt chloride on in vitro adhesion, biofilm formation and susceptibility to amphotericin B of Candida glabrata. J Mycol Médicale/J Med Mycol 24:e169–e177

    Article  CAS  Google Scholar 

  29. Gupta P, Pruthi V, Poluri KM (2021) Mechanistic Insights into Candida biofilm eradication potential of eucalyptol. J Appl Microbiol. https://doi.org/10.1111/jam.14940

    Article  PubMed  Google Scholar 

  30. Pemmaraju SC, Kumar P, Pruthi PA, Prasad R, Pruthi V (2016) Impact of oxidative and osmotic stresses on Candida albicans biofilm formation. Biofouling 32:897–909

    Article  CAS  Google Scholar 

  31. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR, Kadosh D, Lopez-Ribot JL (2010) Dispersion an important step in the Candida albicans biofilm development cycle. PLoS ONE 6:e1000828

    Google Scholar 

  32. Krcmery V, Kalavsky E (2007) Antifungal drug discovery, six new molecules patented after 10 years of feast: why do we need new patented drugs apart from new strategies? Recent Pat Antiinfect Drug Discov 2:182–187

    Article  CAS  Google Scholar 

  33. Warn PA, Sharp A, Guinea J, Denning DW (2004) Effect of hypoxic conditions on in vitro susceptibility testing of amphotericin B, itraconazole and micafungin against Aspergillus and Candida. J Antimicrob Chemother 53:743–749

    Article  CAS  Google Scholar 

  34. Tareq FS, Seung H, Yeon L, Lee J, Seok J, Shin HJ (2015) Ieodoglucomide C and Ieodoglycolipid, new glycolipids from a marine-derived bacterium Bacillus licheniformis 09IDYM23. Lipids 50:513–519

    Article  CAS  Google Scholar 

  35. Mani P, Dineshkumar G, Jayaseelan T, Deepalakshmi K, Kumar GC, Balan SS (2016) Antimicrobial activities of a promising glycolipid biosurfactant from a novel marine Staphylococcus saprophyticus SBPS 15. 3 Biotech 6:163

    Article  CAS  Google Scholar 

  36. Biniarz P, Baranowska JF, Krasowska A (2015) The lipopeptides pseudofactin II and surfactin effectively decrease Candida albicans adhesion and hydrophobicity. Antonie Van Leeuwenhoek 108:343–353

    Article  CAS  Google Scholar 

  37. Gavella M, Kveder M, Lipovac V (2010) Modulation of ROS production in human leukocytes by ganglioside micelles. Braz J Med Biol Res 43:942–949

    Article  CAS  Google Scholar 

  38. Cury-Boaventura MF, Curi R (2005) Regulation of reactive oxygen species (ROS) production by C18 fatty acids in Jurkat and Raji cells. Clin Sci 108:245–253

    Article  CAS  Google Scholar 

  39. Aranda A, Sequedo L, Tolosa L, Quintas G, Burello E, Castell JV, Gombau L (2013) Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol Vitro 27:954–963

    Article  CAS  Google Scholar 

  40. Singh N, Pemmaraju SC, Pruthi PA, Cameotra SS, Pruthi V (2013) Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from pseudomonas aeruginosa DSVP20. Appl Biochem Biotechnol 169:2374–2391

    Article  CAS  Google Scholar 

  41. Kiran GS, Sabarathnam B, Selvin J (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacteriumcasei. FEMS Immunol Med Microbiol 59:432–436

    Article  CAS  Google Scholar 

  42. Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  CAS  Google Scholar 

  43. Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM (2017) Rhamnolipids from non-pathogenic Bukholderiahailandensis E264: physicological characterization, antimicrobial and antibiofilm efficacy against oral hygine related pathogens. New Biotechnol 36:26–36

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SG is extremely thankful to the Department of Science and Technology, INSPIRE (DST, INSPIRE) Govt. of India (Grant No. IF130678) for providing financial support. PG acknowledges DBT-RAship, Department of Biotechnology, Govt. of India. The authors are also thankful to Institute Instrumentation Centre (IIC), IIT Roorkee and Department of Chemical Engineering, IIT Roorkee for providing the instrumentation facility.

Author information

Authors and Affiliations

Authors

Contributions

SG and PG designed and performed the experiments under the supervision of VP. PG critically analysed the experimental data. SG wrote and revised the important intellectual content of the manuscript with the help of PG and VP along with the final approval of the version to be submitted for the publication.

Corresponding author

Correspondence to Sonam Gupta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Gupta, P. & Pruthi, V. Impact of Bacillus licheniformis SV1 Derived Glycolipid on Candida glabrata Biofilm. Curr Microbiol 78, 1813–1822 (2021). https://doi.org/10.1007/s00284-021-02461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02461-5

Navigation